Skip to main content
Log in

Fractional adsorption diffusion

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The aim of this article is to generalize the diffusion based adsorption model to a fractional diffusion and fractional adsorption model. The models are formulated as nonlinear fractional boundary value problems equivalent to a singular Hammerstein integral equation. The novelty is that not only the diffusion component of the model is fractionalized but also the adsorption part. The singular Hammerstein integral equation is solved by Sinc approximations. Specific numerical schemes are presented. Based on these solutions we are able to identify different regimes of adsorption diffusion processes controlled by fractional derivatives verified by experimental data. These regimes allow to classify experiments if examined with respect to their scaling behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Apicella, L. Nicolais, G. Astarita, and E. Drioli, Hygrothermal history dependence of moisture sorption kinetics in epoxy resins. Poly. Eng. Sci. 21 (1981), 18–22.

    Article  Google Scholar 

  2. G. Baumann and F. Stenger, Fractional calculus and Sinc methods. Fract. Calc. Appl. Anal. 14, No 4 (2011), 568–622; DOI: 10.2478/s13540-011-0035-3; http://link.springer.com/journal/13540/.

    MathSciNet  Google Scholar 

  3. H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations. Cambridge University Press, Cambridge (2004).

    Book  MATH  Google Scholar 

  4. M. Caputo and F. Mainardi, A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91 (1971), 134–147.

    Article  Google Scholar 

  5. J. Crank, The Mathematics of Diffusion. Oxford Univ. Press, Oxford (2009).

    Google Scholar 

  6. P. Delahay and I. Trachtenberg, Adsorption kinetics and electrode processes. J. Amer. Chem. Soc. 79 (1957), 2355–2362.

    Article  Google Scholar 

  7. P. Delahay and Ch.T. Fike, Adsorption kinetics with diffusion controlthe plane and the expanding sphere. J. Amer. Chem. Soc. 80 (1958), 2628–2630.

    Article  Google Scholar 

  8. D.D. Do, Adsorption Analysis. Imperial College Press, London (1998).

    Google Scholar 

  9. Z. Földes-Papp and G. Baumann, Fluorescence molecule counting for single-molecule studies in crowded environment of living cells without and with broken ergodicity. Cur. Pharm. Biot. 12 (2011), 824–833.

    Article  Google Scholar 

  10. M. Friedrich, A. Seidel, and D. Gelbin, Measuring adsorption rates from an aqueous solution, AIChE J. 31 (1985), 324–327.

    Article  Google Scholar 

  11. I.P. Gavrilyuk, P.F. Zhuk, and L.N. Bondarenko, Some inverse problems of internal-diffusion kinetics of adsorption. J. Math. Sci. 66 (1993), 2387–2390.

    Article  MathSciNet  Google Scholar 

  12. M. Giona and M. Giustiniani, Adsorption kinetics on fractal surfaces. J. Phys. Chem. 100 (1996), 16690–16699.

    Article  Google Scholar 

  13. J.D. Goddard, History effects in transient diffusion through heterogeneous media. Ind. Chem. Res. 31 (1992), 713–721.

    Article  Google Scholar 

  14. A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  15. T. Kwon, M. Min, H. Lee, and B.J. Kim, Facile preparation of water soluble CuPt nanorods with controlled aspect ratio and study on their catalytic properties in water. J. Mater. Chem. 21 (2011), 11956–11960.

    Article  Google Scholar 

  16. C. Lubich, Convolution quadrature and discretized operational calculus: I. Numer. Math. 52 (1988), 129–145.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Lubich, Convolution quadrature and discretized operational calculus: II. Numer. Math. 52 (1988), 413–425.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. McNamee, F. Stenger, and E.L. Whitney, Whittaker’s cardinal function in retrospect. Math. Comp. 23 (1971), 141–154.

    MathSciNet  Google Scholar 

  19. Y. Meroz, I.M. Sokolov, J. Klafter, Subdiffusion of mixed origins: When ergodicity and nonergodicity coexist. Phys. Rev. E 81 (2010), 010101xxx1–010101xxx4.

    Article  Google Scholar 

  20. R. Metzler, W.G. Glöckle, and Th. Nonnenmacher, Fractional model equation for anomalous diffusion. Physica A 211 (1994), 13–24.

    Article  Google Scholar 

  21. R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion. Phys. Rep. 339 (2000), 1–77.

    Article  MathSciNet  MATH  Google Scholar 

  22. N. Quirke, Adsorption and Transport at the Nanoscale. CRC/Taylor & Francis, Boca Raton, Fla. (2006).

    Google Scholar 

  23. O.J. Redlich and D.L. Peterson, A useful adsorption isotherm. J. Phys. Chem. 63 (1959), 1024–1024.

    Article  Google Scholar 

  24. H. Scher and E.W. Montroll, Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 12 (1975), 2455–2477.

    Article  Google Scholar 

  25. A. Seri-Levy and D. Avnir, Kinetics of diffusion-limited adsorption on fractal surfaces. J. Phys. Chem. 97 (1993), 10380–10384.

    Article  Google Scholar 

  26. F. Stenger, Numerical Methods Based on Sinc and Analytic Functions. Springer, New York (1993).

    Book  MATH  Google Scholar 

  27. F. Stenger, Collocating convolutions. Math. Comp. 64 (1995), 211–235.

    Article  MathSciNet  MATH  Google Scholar 

  28. F. Stenger, Handbook of Sinc Numerical Methods. CRC Press, Boca Raton (2011).

    MATH  Google Scholar 

  29. B. Such, Th. Trevethan, Th. Glatzel, Sh. Kawai, L. Zimmerli, E. Meyer, A.L. Shluger, C.H.M. Amijs, and P. Mendoza, Functionalized truxenes: adsorption and diffusion of single molecules on the KBr(001) surface. ACS Nano 4 (2010), 3429–3439.

    Article  Google Scholar 

  30. Y.J. Weitsman, A continuum diffusion model for viscoelastic materials. J. Phys. Chem. 94 (1990), 961–968.

    Article  Google Scholar 

  31. Y.J. Weitsman and Ya-J. Guo, A correlation between fluid-induced damage and anomalous fluid sorption in polymeric composites. Comp. Sci. Tech. 62 (2002), 889–908.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Baumann.

Additional information

Dedicated to Professor Nonnenmacher on the occasion of his 80th birthday

About this article

Cite this article

Baumann, G., Stenger, F. Fractional adsorption diffusion. fcaa 16, 737–764 (2013). https://doi.org/10.2478/s13540-013-0046-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-013-0046-3

MSC 2010

Key Words and Phrases

Navigation