Skip to main content
Log in

Cognitive map plasticity and imitation strategies to improve individual and social behaviors of autonomous agents

  • Research Article
  • Published:
Paladyn

Abstract

Starting from neurobiological hypotheses on the existence of place cells (PC) in the brain, the aim of this article is to show how little assumptions at both individual and social levels can lead to the emergence of non-trivial global behaviors in a multi-agent system (MAS). In particular, we show that adding a simple, hebbian learning mechanism on a cognitive map allows autonomous, situated agents to adapt themselves in a dynamically changing environment, and that even using simple agent-following strategies (driven either by similarities in the agent movement, or by individual marks — “signatures” — in agents) can dramatically improve the global performance of the MAS, in terms of survival rate of the agents. Moreover, we show that analogies can be made between such a MAS and the emergence of certain social behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Deneubourg, G. Theraulaz, and R. Beckers, “Swarm-made architectures,” in Proceedings of the first european conference on artificial intelligence (F. Varela and P. Bourgine, eds.), pp. 123–133, MIT Press, 1992.

  2. J. O’Keefe and L. Nadel, The hippocampus as a cognitive map. Oxford: Clarendon Press, 1978.

    Google Scholar 

  3. N. Burgess, M. Recce, and J. O’Keefe, “A model of hippocampal function,” Neural Networks, vol. 7, no. 6/7, pp. 1065–1081, 1994.

    Article  MATH  Google Scholar 

  4. I. Bachelor and A. Waxman, “Mobile robot visual mapping and localization: a view-based neuro computational architecture that emulates hippocampal place learning,” Neural Networks, vol. 6/7, pp. 1083–1099, 1994.

    Article  Google Scholar 

  5. P. Andry, P. Gaussier, and J. Nadel, “From visuo-motor development to low-level imitation,” in 2nd International Workshop on Learning Robots — EWLR’98, (Edinburgh, UK), 1998.

  6. N. A. Schmajuck and B. S. Zanutto, “Escape, avoidance, and imitation: A neural network approach,” Adaptive Behavior, vol. 6, no. 1, pp. 63–129, 1997.

    Article  Google Scholar 

  7. B. Schölkopf and H. Mallot, “View-based cognitive mapping and path-finding,” Adaptive Behavior, vol. 3, pp. 311–348, 1995.

    Article  Google Scholar 

  8. J. O’Keefe, “The hippocampal cognitive map and navigational strategies,” in Brain and Space (J. Paillard, ed.), pp. 273–295, Oxford University Press, 1991.

  9. A. Pipe, “An architecture for learning potential field cognitive maps with an application to mobile robotics,” Adaptive Behavior, vol. 8, no. 2, pp. 173–204, 2000.

    Article  Google Scholar 

  10. P. Gaussier, A. Revel, J. Banquet, and V. Babeau, “From view cells and place cells to cognitivemap learning: processing stages of the hippocampal system,” Biological Cybernetics, vol. 86, pp. 15–28, 2002.

    Article  MATH  Google Scholar 

  11. E. Tolman, “Cognitive maps in rats and men,” The Psychological Review, vol. 55, no. 4, 1948.

  12. L. Martinet, B. Fouque, J. Passot, J. Meyer, and A. Arleo, “Modelling the cortical columnar organisation for topological state-space representation, and action planning,” in procs of the 10th Int. conf. on Simulation of Adaptive Behavior, SAB 2008, 2008.

  13. R. Szabo, “Topological navigation of simulated robots using occupancy grid,” ISSN 1729-8806, vol. 1, p. 201, 2004.

    Google Scholar 

  14. O. Trullier and J. Meyer, “Animat navigation using a cognitive graph,” Biol. Cybern., vol. 83, pp. 271–285, 2000.

    Article  MATH  Google Scholar 

  15. G. Damiand, P. Peltier, L. Fuchs, and P. Lienhardt, “Topological map: An efficient tool to compute incrementally topological features on 3d images.,” in Proceedings of 11th International Workshop on Combinatorial Image Analysis, vol. 4040, (Berlin, Germany), pp. 1–15, LNCS, June 2006.

    Article  Google Scholar 

  16. P. Laroque, M. Quoy, and P. Gaussier, “Learning and motivational couplings promote smarter behaviors of an animat in an unknown world,” in European Workshop on Learning Robots, EWLR, (Prague), pp. 25–31, september 2002.

  17. P. Laroque, N. Cuperlier, and P. Gaussier, “Impact of imitation on the dynamics of animat populations in a spatial cognition task,” in IAS-8, (Amsterdam), pp. 71–79, 2004.

  18. M. Quoy, P. Laroque, and P. Gaussier, “Learning and motivational couplings promote smarter behaviors of an animat in an unknown world,” Robotics and Autonous Systems, vol. 38, no. 3–4, pp. 149–156, 2002.

    Article  Google Scholar 

  19. P. Laroque, E. Fournier, H. Pham, and P. Gaussier, “Cognitive map plasticity and imitation strategies to extend the performance of a mas,” in Proc. of IAS-9, Intelligent Autonomous Systems, (Tokyo), march 2006.

  20. M. Toussaint, “A sensorimotor map: Modulating lateral interactions for anticipation and planning,” Neural Compuation, vol. 18, pp. 1132–1135, 2006.

    Article  MATH  Google Scholar 

  21. M. V. Butz, O. Herbort, and J. Hoffmann, “Exploiting redundancy for flexible behavior: Unsupervised learning in a modular sensorimotor control architecture,” Psychological Review, vol. 114(4), pp. 1015–1046 month = Oct., OPTnote =, OPTannote =, 2007.

    Article  Google Scholar 

  22. S. Leprêtre, P. Gaussier, and J. Cocquerez, “From navigation to active object recognition,” in SAB 2000, (Paris, France), september 2000.

  23. J. Nadel, P. Andry, P. Gaussier, and A. Revel, “Comparative developmental sequences of imitation between infants, autism and robots,” Infant Behavior and development, 2002.

  24. P. Andry, P. Gaussier, and J. N. and B. Hirsbrunner, “Learning invariant sensory-motor behaviors: A developmental approach of imitation mechanisms,” Adaptive behavior, vol. 12, no. 2, 2004.

  25. P. Andry, P. Gaussier, and J. Nadel, “Autonomous learning and reproduction of complex sequence: a multimodal architecture for bootstrapping imitation games,” in Proceedings of the Fith Internationnal Workshop on Epigenetic Robotics, Modeling Cognitive development in robotic Systems (. Lund University Cognitive Studies, ed.), pp. 97–100, EPIROB05, Jully 2005.

  26. P. Gaussier, S. Moga, J. Banquet, and M. Quoy, “From perceptionaction loops to imitation processes: A bottom-up approach of learning by imitation,” in Socially Intelligent Agents, AAAI fall symposium, (Boston), pp. 49–54, 1997.

  27. C. Giovannangeli, P. Gaussier, and J. P. Banquet, “Robustness of visual place cells in dynamic indoor and outdoor environment,” International Journal of Advanced Robotic Systems, vol. 3, pp. 115–124, jun 2006.

    Google Scholar 

  28. F. Amblard and D. Phan, Modélisation et simulation multiagents: applications pour les sciences de l homme et de la société. Hermes Science Publications, Lavoisier, 2006.

    Google Scholar 

  29. N. Gilbert and J. Doran, Simulating Societies: the Computer Simulation of Social Phenomena. UCL Press, 1994.

  30. N. Gilbert and R. Conte, Artificial Societies: the Computer Simulation of Social Life. UCL Press, 1995.

  31. J. Epstein and R. Axtell, Growing Artificial Societies. Social Sciences from the Bottom-Up. Brookings Institution Press, Washington D.C., 1996.

    Google Scholar 

  32. W. B. Arthur, J. H. Holland, B. LeBaron, R. Palmer, and P. Tyler, The Economy as an Evolving Complex System II, ch. Asset Pricing Under Endogeneous Expectations in an Artificial Stock Market. Arthur W.B., Durlauf S.N., Lane D.A., santa fe institute, studies in the science of complexity, addisonwesley reading mass. ed., 1997.

  33. R. Axtell, “The complexity of exchange,” The Economic Journal, 2005.

  34. P. Bourgine and J. Nadal, Cognitive Economy, an Interdisciplinary Approach. Springer, 2004.

  35. T. Schelling, Micromotives ans macrobehavior. Norton, NY, 1978.

  36. L. Sanders, D. Pumain, H. Mathian, F. GuérinPace, and S. Bura, “Simpop: a multi-agent system for the study of urbanism,” Environment and Planning, 1997.

  37. M. Batty, “Polynucleated urban landscapes,” Urban Studies, 2001.

  38. T. Schelling, “Models of segregation,” American Economic Review, 1969.

  39. I. Benenson, I. Omer, and E. Hatna, “Entity-based modelling of urban residential dynamics: the case of yaffo,” Environment and Planning, 2002.

  40. J. Barros, “Simulating urban dynamics in latin american cities,” in Proceedings of the 7th International Conference on GeoComputation, 2003.

  41. K. Lynch, The Image of the City. MIT Press, 1960.

  42. C. Freksa, C. Habel, and K. Wender, “Spatial cognition. an interdisciplinary approach to representing and processing spatial knowledge,” Lecture Notes in Spatial Intelligence, Springer, 1998.

  43. J. Portugali, “Geography, environment and cognition: an introduction,” Geoforum, 1992.

  44. N. Cuperlier, M. Quoy, and P. Gaussier, “Neurobiologically inspired mobile robot navigation and planning,” Frontiers in NeuroRobotics, vol. 1, no. 1, 2007.

  45. A. Alvernhe, T. V. Cauter, E. Save, and B. Poucet, “Different ca1 and ca3 representations of novel routes in a shortcut situation,” The Journal of Neuroscience, vol. 28(29), pp. 7324–7333, 2008.

    Article  Google Scholar 

  46. E. V. Lubenov and A. G. Siapas, “Hippocampal theta oscillations are travelling waves,” Nature, vol. 459, pp. 534–539, may 2009.

    Article  Google Scholar 

  47. J. A. Meyer and S. Wilson, “From animals to animats,” in First International Conference on Simulation of Adaptive Behavior (M. Press, ed.), Bardford Books, 1991.

  48. T. Tyrrell, Computational Mechanisms for Action Selection. PhD thesis, University of Edinburgh, 1993.

  49. V. Braitenberg, Vehicles: experiments in synthetic psychology. Cambridge MA: MIT Press, 1984.

    Google Scholar 

  50. R. A. Brooks, “A robust layered control system for a mobile robot,” IEEE journal of Robotics and Automation, vol. 40, pp. 201–211, 1981.

    Google Scholar 

  51. C. Giovannangeli, P. Gaussier, and J. P. Banquet, “Robot as a tool to study the robustness of visual place cells,” in I3M’2005: International Conference on Conceptual Modeling and Simulation (CMS 2005), (Marseille), pp. 97–104, October 2005.

  52. J. P. Banquet, P. Gaussier, M. Quoy, A. Revel, and Y. Burnod, “A hierarchy of associations in hippocampo-cortical systems: Cognitive maps and navigation strategies,” Neural Computation, vol. 17, pp. 1339–1384, June 2005.

    Article  MATH  Google Scholar 

  53. J. Banquet, P. Gaussier, J. Dreher, C. Joulain, and A. Revel, Cognitive Science Perspectives on Personality and Emotion, ch. Space-Time, Order and Hierarchy in Fronto-Hippocamal System: A Neural Basis of Personality. Elsevier Science BV Amsterdam, 1997.

  54. N. Cuperlier, M. Quoy, P. Laroque, and P. Gaussier, “Transition cells and neural fields for navigation and planning,” in IWINAC05 (J. A. J. Mira, ed.), Lecture Notes in Computer Science, pp. 346–355, Springer, june 2005.

  55. R. Bellman, “On a routing problem,” Quarterly of Applied Mathematics, vol. 16, pp. 87–90, 1958.

    MATH  MathSciNet  Google Scholar 

  56. D. Hebb, The organization of behavior. Wiley, New York, 1949.

    Google Scholar 

  57. S. Leprêtre and P. Gaussier, “Utilisation d’une carte cognitive pour le problème de la sélection de l’action dans un cadre multimotivationnel,” in Neurosciences et sciences pour l’ingénieur — NSI98, (Colmar), 1998.

  58. P. Andry, P. Gaussier, S. Moga, and J. Nadel, Approche dynamique de la cognition artificielle, ch. Approche neurocybernétique de l’imitation. A. Guillot and E. Daucé, hermes ed., 2002.

  59. T. Kohonen, Self-Organization and associative memory. Berlin: Heidelberg: Springer-Verlag, 3rd ed., 1989.

    Google Scholar 

  60. F. Gaschet and N. Gaussier, Concentration économique et ségrégation spatiale, ch. 12, “Les échelles du mauvais appartement spatial au sein de l’agglomération bordelaise“, pp. 221–241. M.A. Buisson and D. Mignot, de boeck university ed., 2005.

  61. M. Batty, Cities and complexity: understanding cities with Cellular Automata, AgentBased Models and Fractal. MIT Press, 2005.

  62. H. Simon, Models of Man, ch. A Behavioral Model of Rational Choice. 1957.

  63. W. Liu, A. Winfield, J. Sa, J. Chen, and L. Dou, “Towards energy optimization: emergent task allocation in a swarm of foraging robots,” Adaptive behavior, 2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Laroque.

About this article

Cite this article

Laroque, P., Gaussier, N., Cuperlier, N. et al. Cognitive map plasticity and imitation strategies to improve individual and social behaviors of autonomous agents. Paladyn 1, 25–36 (2010). https://doi.org/10.2478/s13230-010-0004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13230-010-0004-2

Keywords

Navigation