Skip to main content
Log in

Ultra-wide bandwidth wavelength selective couplers based on the all solid multi-core Ge-doped fibre

  • Original Papers
  • Published:
Opto-Electronics Review

Abstract

A novel wavelength selective coupler based on the all solid nine-core Ge-doped fibre has been proposed. The wavelength selective coupler is based on the phenomenon of a multi-core coupling. All the cores are made of Ge-doped silica and the index of central core is larger than the outer core. At the fixed fibre length, the different wavelength can be selected. The performances of coupling and propagation characteristics have been numerically investigated by using a full beam propagation method (BPM). Simulation results show that the all solid nine-core Ge-doped fibre can achieve simultaneous shorter coupler length and wideband filtering characteristics. The 0.763 mm and 0.745 mm wavelength selective coupler are proposed to achieve different wavelength division and the bandwidth is up to the 400 nm, and 300 nm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Yan, J. Toulouse, I. Velchev, and V.R. Slava, “Decoupling and asymmetric coupling in triple-core photonic crystal fibres”, J. Opt. Soc. Am. B25, 1488–1495 (2008).

    Article  ADS  Google Scholar 

  2. D. Dorosz, and M. Kochanowicz, “Model analysis of super-mode generation in active 5-core optical fibre”, Opto-Electron. Rev. 19, 40–45 (2011).

    Article  ADS  Google Scholar 

  3. X. Liu, S. Chandrasekhar, X. Chen, P.J. Winzer, Y. Pan, T.F. Taunay, B. Zhu, M. Fishteyn, M.F. Yan, J.M. Fini, E.M. Monberg, and F.V. Dimarcello, “1.12-Tb/s 32-QAM-OFDM superchannel with 8.6-b/s/Hz intrachannel spectral efficiency and space-division multiplexed transmission with 60-b/s/Hz aggregate spectral efficiency”, Opt. Express 19, B958–B964 (2011).

    Article  Google Scholar 

  4. I. Gasulla and J. Capmany, “Microwave Photonics Applications ofMulticore Fibres”, IEEE Photonics J. 4, 877–888 (2012).

    Article  Google Scholar 

  5. B.M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, and A. Barthélémy, “Phase-locked supermode emissions from a dual multicore fibre laser”, Appl. Phys. B105, 213–217 (2011).

    Article  ADS  Google Scholar 

  6. Y. Huo, P. Cheo, and G. King, “Fundamental mode operation of a 19-core phase-locked Yb-doped fibre amplifier”, Opt. Express 12, 6230–6239 (2004).

    Article  ADS  Google Scholar 

  7. B. Zhu, T.F. Taunay, M.F. Yan, J.M. Fini, M. Fishteyn, E.M. Monberg, and F.V. Dimarcello, “Seven-core multicore fibre transmissions for passive optical network”, Opt. Express 18, 11117–11122 (2012).

    Article  ADS  Google Scholar 

  8. M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “coupled-mode theory and coupled-power theory”, Opt. Express 19, B102–B111 (2011).

    Article  Google Scholar 

  9. K. Szaniawska, T. Nasilowski, and T.R. Wolinski, “Simplified coupling power model for fibres fusion”, Opto-Electron. Rev. 17, 193–199 (2009).

    Article  ADS  Google Scholar 

  10. V. Grubsky, D.S. Starodubov, and J. Feinberg, “Wavelength—selective coupler and add-drop multiplexer using long-period fibre gratings”, Opt. Fibre Commun. Conf. 4, 28–30 (2000).

    Google Scholar 

  11. D.C. Johnson, K.O. Hill, F. Bilodeau, and S. Faucher, “New design concept for a narrowband wavelength-selective optical tap and combiner”, Electron. Lett. 23, 668–669 (1987).

    Article  Google Scholar 

  12. X. Sun, “Wavelength-selective coupling of dual-core photonic crystal fibre with a hybrid light-guiding mechanism”, Opt. Lett. 32, 2484–2486 (2007).

    Article  ADS  Google Scholar 

  13. J. Zimmermann, M. Kamp, A. Forchel, and R. Marz, “Photonic crystal waveguide directional couplers as wavelength selective optical filters”, Opt. Commun. 230, 387–392 (2004).

    Article  ADS  Google Scholar 

  14. M.S. Yataki, D.N. Payne, and M.P. Varnham, “All-fibre polarising beamsplitter”, Electron. Lett. 21, 249–251 (1985).

    Article  Google Scholar 

  15. R. Zengerle and O. Leminger, “Narrow-band wavelength-selective directional couplers made of dissimilar single-mode fibres”, J. Lightwave Technol. 5, 1196–1198 (1987).

    Article  ADS  Google Scholar 

  16. B. Malo, F. Bilodeau, K.O. Hill, D.C. Johnson, and J. Albert, “Unbalanced dissimilar-fibre Mach-Zehnder interferometer: application as filter”, Electron. Lett. 25, 1416–1417 (1989).

    Article  Google Scholar 

  17. Y. Yan and J. Toulouse, “Polarization dependence of the inter-core coupling in triple-core photonic crystal fibres”, J. Opt. Soc. Am. B26, 762–767 (2009).

    Article  ADS  Google Scholar 

  18. S. Zheng, G. Ren, Z. Lin, and S.S. Jian, “Mode-coupling analysis and trench design for large-mode-area low-cross—talk multicore fibre”, Appl. Opt. 52, 4541–4548 (2013).

    Article  Google Scholar 

  19. H. Zhou, G. Xia, and Y. Fan “Output characteristics of weak—coupling fibre grating external cavity semiconductor laser”, Opto-Electron. Rev. 13, 27–30 (2005)

    Google Scholar 

  20. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fibre”, Opt. Express 19, 16576–16592 (2011).

    Article  ADS  Google Scholar 

  21. S. Liu, S.G. Li, G.B. Yin, R.P. Feng, and X.Y. Wang, “A novel polarization splitter in ZnTe tellurite glass three-core photonic crystal fibre”, Opt. Commun. 285, 1097–1102 (2012).

    Article  ADS  Google Scholar 

  22. A. Rizea “Design technique for all-dielectric non-polarizing beam splitter plate”, Opto-Electron. Rev. 20, 96–99 (2012).

    Article  Google Scholar 

  23. Y. Tottori, T. Kobayashi, and M. Watanabe, “Low loss optical connection module for seven-core multicore fibre and seven single-mode fibres”, IEEE Photonics Tech. L. 24, 1926–1928 (2012).

    Article  ADS  Google Scholar 

  24. J. Sakaguchi, W. Klaus, B. J. Puttnam, J. M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tsuchida, K. Maeda, M. Tadakuma, K. Imamura, R. Sugizaki, T. Kobayashi, Y. Tottori, M. Wa- tanabe, and R.V. Jensen, “19-core MCF transmission system using EDFA with shared core pumping coupled via free—space optics”, Opt. Express 22, 90–95 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sun.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Sun, B. & Yu, Y. Ultra-wide bandwidth wavelength selective couplers based on the all solid multi-core Ge-doped fibre. Opto-Electron. Rev. 22, 166–170 (2014). https://doi.org/10.2478/s11772-014-0193-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11772-014-0193-z

Keywords

Navigation