Skip to main content
Log in

Hyperuricemia and Adverse Outcomes in Cardiovascular Disease

Potential for Therapeutic Intervention

  • Current Opinion
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

High uric acid levels are associated with increased morbidity and mortality rates in cardiovascular disease. In this article we explore the relationship between cardiovascular disease and xanthine oxidase activity. We look at the evidence that uric acid and its production via the xanthine oxidase pathway, may directly contribute to this increased cardiovascular risk. We examine the relationship between uric acid and other established cardiovascular risk factors and look at the evidence that reducing uric acid production may have a beneficial impact on cardiovascular morbidity and mortality. We conclude that although there is currently insufficient evidence to recommend the routine use of xanthine oxidase inhibitors in those with cardiovascular disease and asymptomatic hyperuricemia, there is sufficient evidence to warrant a large scale morbidity and mortality trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Liese AD, Hense HW, Lowel H, et al. Association of serum uric acid with all cause and cardiovascular mortality and incident myocardial infarction in the Monica Augsburg cohort. World Health Organisation Monitoring Trends and Determinants in Cardiovascular Diseases. Epidemiology 1999; 10: 391–7

    Article  PubMed  CAS  Google Scholar 

  2. Leyva F, Anker SD, Swan J, et al. Serum uric acid as an index of impaired oxidative metabolism in chronic heart failure. Eur Heart J 1997; 18: 858–65

    Article  PubMed  CAS  Google Scholar 

  3. Wong KYK, MacWalter RS, Fraser HW, et al. Urate predicts subsequent cardiac death in stroke survivors. Eur Heart J 2002 May; 23(10): 788–93

    Article  PubMed  CAS  Google Scholar 

  4. Verdecchia P, Schillaci G, Reboldi G, et al. Relation between serum uric acid and risk of cardiovascular disease in essential hypertension. The Piuma study. Hypertension 2000 Dec; 36(6): 1072–8

    Article  CAS  Google Scholar 

  5. Lehto S, Niskanen L, Ronnemaa T, et al. Serum uric acid is a strong predictor of stroke in patients with non-insulin-dependent diabetes mellitus. Stroke 1998; 29: 635–9

    Article  PubMed  CAS  Google Scholar 

  6. Culleton BF, Larson MG, Kannel WB, et al. Serum uric acid and risk of cardiovascular disease and death: the Framingham Heart Study. Ann Intern Med 1999; 131: 7–13

    PubMed  CAS  Google Scholar 

  7. Wannamethee SG, Shaper AG, Whincup PH. Serum urate and the risk of major coronary heart disease events. Heart 1997; 78: 147–53

    PubMed  CAS  Google Scholar 

  8. Facchini F, Chen YDI, Hollenbeck CB, et al. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance and plasma uric acid concentration. JAMA 1991; 266: 3008–11

    Article  PubMed  CAS  Google Scholar 

  9. Bengtsson C, Lapidus S, Stendahl C, et al. Hyperuricaemia and risk of cardiovascular disease and overall death: a 12-year follow-up of participants in the population study of Gothenburg, Sweden. Acta Med Scand 1988; 224: 549–55

    Article  PubMed  CAS  Google Scholar 

  10. Kannel WB. Metabolic risk factors for coronary heart disease in women: perspective from the Framingham Study. Am J Epidemiol 1985; 121: 11–8

    PubMed  Google Scholar 

  11. Aderman MH, Cohen HM, Kinlighn S, et al. Does treatment-associated increase in uric acid reduce the cardioprotective effect of diuretics in hypertensive patients [abstract]? Am J Hypertens 1998; 2: 16A

    Article  Google Scholar 

  12. Iribarren C, Sharp DS, Curb JD, et al. High uric acid: a metabolic marker of coronary heart disease among alcohol abstainer? J Clin Epidemiol 1996; 49: 673–8

    Article  PubMed  CAS  Google Scholar 

  13. Ward HJ. Uric acid as an independent risk factor in the treatment of hypertension. Lancet 1998; 352: 670–1

    Article  PubMed  CAS  Google Scholar 

  14. Cannon PJ, Stason WB, Demartini FE, et al. Hyperuricaemia in primary and renal hypertension. N Engl J Med 1966; 275: 457–64

    Article  PubMed  CAS  Google Scholar 

  15. Langford HG, Blaufox MD, Borhani NO, et al. Is thiazide produced uric acid elevation harmful? Analysis of the data from the hypertension detection and follow-up program. Arch Intern Med 1987; 147: 645–9

    Article  PubMed  CAS  Google Scholar 

  16. Tisler A, Pierratos A, Honey JD, et al. Hypertension aggregates in families of kidney stone patients with high urinary excretion of uric acid. J Hypertens 1999 Dec; 17 (12 Pt 2): 1853–8

    Article  PubMed  CAS  Google Scholar 

  17. Ueno M, Tomita Y, Tsuchihashi T, et al. Clinical alterations in normotensive offspring with parental hypertension. J Hypertens 1998; 6 Suppl. 4: S50–1

    Google Scholar 

  18. Hunt SC, Stephenson SH, Hopkins PN, et al. Predictors of an increased future risk of hypertension in Utah. Hypertension 1991; 17: 969–76

    Article  PubMed  CAS  Google Scholar 

  19. Capuccio FP, Strazzullo P, Farinaro E, et al. Uric acid metabolism and tubular sodium handling: results from a population-based study. JAMA 1993; 270: 354–9

    Article  Google Scholar 

  20. Donskov AS, Balkarov IM, Fadina ZM, et al. Urate affection of kidneys and metabolic disturbances in hypertensive patients. Ter Arkh 1999; 71 (6): 53–6

    PubMed  CAS  Google Scholar 

  21. Britten MB, Eisner M, Walter DH, et al. Elevated uric acid levels in hypercholesterolaemia are associated with coronary endothelial dysfunction [abstract 30]. Circulation 1999; 100 Suppl.: I–6

    Google Scholar 

  22. Nakanishi N, Tatara K, Nakamura K, et al. Risk factors for the incidence of hyperuricaemia: a 6-year longitudinal study of middle aged Japanese men. Int J Epidemiol 1999 Oct; 28 (5): 888–93

    Article  PubMed  CAS  Google Scholar 

  23. Reaving G. Banting lecture 1998: role of insulin resistance in human disease. Diabetes 1998; 37: 1595–607

    Google Scholar 

  24. Modan M, Halkin H, Almog S, et al. Hyperinsulinaemia: a link between hypertension, obesity and glucose tolerance. J Clin Invest 1985; 75: 809–17

    Article  PubMed  CAS  Google Scholar 

  25. Depres JP, Marette A. Relation of components of insulin resistance syndrome to coronary disease risk. Curr Opin Lipidol 1994; 5: 274–89

    Article  Google Scholar 

  26. Boyko EJ, de Courten M, Zimmet PZ, et al. Features of the metabolic syndrome predict higher risk of diabetes and impaired glucose tolerance: a prospective study in Mauritius. Diabetes Care 2000 Sep; 23 (9): 1242–8

    Article  PubMed  CAS  Google Scholar 

  27. Frohlich M, Imhof A, Berg G, et al. Association between C- reactive protein and features of the metabolic syndrome: a population-based study. Diabetes Care 2000 Dec; 23 (12): 1835–9

    Article  PubMed  CAS  Google Scholar 

  28. Leyva F, Anker SD, Godsland IF, et al. Uric acid in chronic heart failure: a marker of chronic inflammation. Eur Heart J 1998; 19: 1814–22

    Article  PubMed  CAS  Google Scholar 

  29. Kuzuya M, Ando F, Iguchi A, et al. Effect of aging on serum uric acid levels: longitudinal changes in a Japanese population. J Gerentol A Biol Sci Med Sci 2002; 57 (10): M660–4

    Article  Google Scholar 

  30. Castelli P, Condemi AM, Brambillasca C, et al. Improvement of cardiac function by allopurinol in patients undergoing cardiac surgery. J Cardiovasc Pharmacol 1995; 25: 119–25

    Article  PubMed  CAS  Google Scholar 

  31. Patetsios P, Rodino W, Wisselink W, et al. Identification of uric acid in aortic aneurysms and atherosclerotic artery. Ann N Y Acad Sci 1996; 800: 243–5

    Article  PubMed  CAS  Google Scholar 

  32. Bagnati M, Perugini C, Cau C, et al. When and why a water soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: a study using uric acid. Biochem J 1999; 340 (Pt 1): 143–52

    Article  PubMed  CAS  Google Scholar 

  33. Mustard JF, Murphy EA, Ogryzlo MA. Blood coagulation and platelet economy in subjects with primary gout. CMAJ 1963; 89: 1207–11

    CAS  Google Scholar 

  34. Sulfinpyrazone in the prevention of cardiac death after myocardial infarction: the Anturane Reinfarction Trial. N Engl J Med 1978 Feb 9; 298 (6): 289-95

  35. Cairns JA, Gent M, Singer J, et al. Aspirin, sulfinpyrazone, or both in unstable angina: results of a Canadian multicenter trial. N Engl J Med 1985 Nov 28; 313 (22): 1369–75

    Article  PubMed  CAS  Google Scholar 

  36. Sulfinpyrazone in the prevention of sudden death after myocardial infarction. The Anturane Reinfarction Trial Research Group. N Engl J Med 1980 Jan 31; 302 (5): 250-6

    Google Scholar 

  37. Gent M, Barnett HJ, Sackett DL, et al. A randomised trial of aspirin and sulfinpyrazone in patients with threatened stroke: results and methodologie issues. Circulation 1980 Dec; 62 (6 Pt 2): V97–105

    Article  PubMed  CAS  Google Scholar 

  38. Farquharson C, Butler R, Hill A, et al. Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation 2002; 106: 221–6

    Article  PubMed  CAS  Google Scholar 

  39. McCord JM. Oxygen-derived free radicals in postischaemic tissue injury. N Engl J Med 1985; 312: 159–63

    Article  PubMed  CAS  Google Scholar 

  40. Hellsten Y, Frandsen U, Ortherblad N, et al. Xanthine oxidase in human skeletal muscle following eccentric exercise: a role in inflammation. J Physiol 1997; 498: 239–48

    PubMed  CAS  Google Scholar 

  41. Vina J, Gimeno A, Sastre J, et al. Mechanism of free radical production in exhaustive exercise in humans and rats; role of xanthine oxidase and protection by allopurinol. IUBMB Life 2000 Jun; 49 (6): 539–44

    Article  PubMed  CAS  Google Scholar 

  42. DeScheerder IK, van de Kraay AM, Lamers JMJ, et al. Myocardial malondialdehyde and uric acid release after short acting coronary occlusion during coronary angioplasty: Potential mechanism for free radical generation. Am J Cardiol 1991; 68: 392–5

    Article  CAS  Google Scholar 

  43. Becker BF, Permanetter B, Richardt G, et al. Coronary sinus uric acid as an index of chronic myocardial ischaemia in man. Proceedings of Second International Meeting of the Working Group on Heart Failure. Cologne 1997; May 26: European Society of Cardiology, 1997: 10.

  44. Sluiter W, Pietersma A, Lamers JM, et al. Leukocyte adhesion molecules and the vascular endothelium: their role in the pathogenesis of cardiovascular disease and the mechanisms underlying their expression. J Cardiovasc Pharmacol 1993; 22 Suppl. 14: S37–44

    Article  PubMed  CAS  Google Scholar 

  45. Gao WD, Liu Y, Marban E. Selective effects of oxygen free radicals on excitationcontraction coupling in ventricular muscle: implications for the mechanism of stunned myocardium. Circulation 1996; 94: 2597–604

    Article  PubMed  CAS  Google Scholar 

  46. Xia Y, Zweier JL. Substrate control of free radical generation from xanthine oxidase in the post ischaemic heart. J Biol Chem 1995; 270: 18797–803

    Article  PubMed  CAS  Google Scholar 

  47. Bolli R, Jeroudi MO, Patel BS, et al. Marked reduction in of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Circ Res 1989; 65: 607–22

    Article  PubMed  CAS  Google Scholar 

  48. Rajagopalan S, Meng XP, Ramasamy S, et al. Reactive oxygen species produces by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro: implications for atherosclerotic plaque stability. J Clin Invest 1996; 98: 2572–9

    Article  PubMed  CAS  Google Scholar 

  49. McCord JM. Oxygen-derived free radicals in post-ischaemic tissue injury. N Engl J Med 1985; 312: 159–63

    Article  PubMed  CAS  Google Scholar 

  50. Friedl HP, Till GO, Ryan US, et al. Mediator induced activation of xanthine oxidase in endothelial cells. FASEB J 1989; 3: 2512–8

    PubMed  CAS  Google Scholar 

  51. Granger DM, Benoit JN, Suzuki M, et al. Leukocyte adherence to venular endothelium during ischaemia-reperfusion. Am J Physiol 1989; 257: G683–8

    PubMed  CAS  Google Scholar 

  52. Menger MD, Peikan S, Ateiner D, et al. Microvascular ischaemia-reperfusion injury in striated muscle: significance of ‘reflow paradox’. Am J Physiol 1992; 263: H190–6

    Google Scholar 

  53. Doehner W, Schoene N, Rauchhaus M, et al. Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure. Circulation 2002; 105: 2619–24

    Article  PubMed  CAS  Google Scholar 

  54. Cardillo C, Kilcoyne CM, Cannon RO, et al. Xanthine oxidase inhibition with oxypurinol improves endothelial vasodilator function in hypercholesterolaemic but not hypertensive patients. Hypertension 1997; 30 (1 Pt 1): 57–63

    Article  PubMed  CAS  Google Scholar 

  55. Butler R, Morris AD, Belch JJF, et al. Allopurinol normalises endothelial function in Type 2 diabetes with mild hypertension. Hypertension 2000; 35: 746–51

    Article  PubMed  CAS  Google Scholar 

  56. Perticone F, Ceravolo R, Pujia A, et al. Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation 2001; 104: 191–6

    Article  PubMed  CAS  Google Scholar 

  57. Al Suwaidi J, Hamasaki S, Higano S, et al. Long term follow up of patients with mild coronary disease and endothelial dysfunction. Circulation 2000; 101: 948–54

    Article  Google Scholar 

  58. Heitzer T, Schlinzig T, Krohn K, et al. Endothelial dysfunction, oxidative stress and the risk of cardiovascular events in patients with coronary artery disease. Circulation 2001; 104: 2673–8

    Article  PubMed  CAS  Google Scholar 

  59. Gokce N, Keaney JF, Hunter LM, et al. Risk stratification for postoperative cardiovascular events via noninvasive assessment of endothelial function: a prospective study. Circulation 2002; 105: 1567–72

    Article  PubMed  Google Scholar 

  60. Schachinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 2000; 101: 1899–906

    Article  PubMed  CAS  Google Scholar 

  61. Farquharson C, Struthers AD. Spironolactone increases NO bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular AI/A11 conversion in patients with CHF. Circulation 2000; 101: 594–7

    Article  PubMed  CAS  Google Scholar 

  62. Egasshira K, Hirooka Y, Kai H, et al. Reduction in serum cholesterol with pravastatin improves endothelium dependent coronary vasomotion in patients with hypercholesterolaemia. Circulation 1994; 89: 2519–24

    Article  Google Scholar 

  63. Kharbanda RK, Walton B, Allen M, et al. Prevention of inflammation-induced endothelial dysfunction: a novel vasculo-protective action of aspirin. Circulation 2002, 4

  64. Koh KK. Effects of statins on vascular wall: vasomotor function, inflammation and plaque stability. Cardiovasc Res 2000; 47 (4): 648–57

    Article  PubMed  CAS  Google Scholar 

  65. Chambers DJ, Braimbridge MV, Hearse DJ. Free radicals and cardioplegia: allopurinol and oxypurinol reduce myocardial injury following ischaemia arrest. Ann Thorac Surg 1987; 44: 291–7

    Article  PubMed  CAS  Google Scholar 

  66. Stewart JR, Crate SL, Loughlin V, et al. Prevention of free radical-induced myocardial reperfusion injury with allopurinol. J Thorac Cardiovasc Surg 1985; 90: 68–72

    PubMed  CAS  Google Scholar 

  67. Suzuki H, DeLano FA, Parks DA, et al. Xanthine oxidase activity associated with arterial blood pressure in spontaneously hypertensive rats. Proc Natl Acad Sci U S A 1998 Apr 14; 95 (8): 4754–9

    Article  PubMed  CAS  Google Scholar 

  68. Ekelund UEG, Harrison RW, Shokek O, et al. Intravenous allopurinol decreases myocardial oxygen consumption and increases mechanical efficiency in dogs with pacing induced heart failure. Circ Res 1999; 85: 437–45

    Article  PubMed  CAS  Google Scholar 

  69. Ukai T, Cheng C, Tachibana H, et al. Allopurinol enhances the contractile response to dobutamine and exercise in dogs with pacing induced heart failure. Circulation 2001; 103: 750–5

    Article  PubMed  CAS  Google Scholar 

  70. Cappola TP, Kass DA, Nelson GS, et al. Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy. Circulation 2001; 104: 2407–17

    Article  PubMed  CAS  Google Scholar 

  71. Leyva F, Chua TP, Anker SD, et al. Uric acid in chronic heart failure: a measure of the anaerobic threshold. Metabolism 1998 Sep; 47 (9): 1156–9

    Article  PubMed  CAS  Google Scholar 

  72. Perez NG, Gao WD, Marban E. Novel myofilament Ca2+ sensitising property of xanthine oxidase inhibitors. Circ Res 1998; 83: 423–30

    Article  PubMed  CAS  Google Scholar 

  73. Taggart DP, Young V, Hooper J, et al. Lack of cardioprotective efficacy of allopurinol in coronary artery surgery. Br Heart J 1994; 71: 177–81

    Article  PubMed  CAS  Google Scholar 

  74. Rashid MA, William-Olsson G. Influence of allopurinol on cardiac complications in open heart surgery. Ann Thorac Surg 1991; 52: 127–30

    Article  PubMed  CAS  Google Scholar 

  75. Tabayashi K, Suzuki Y, Nagamine S, et al. A clinical trial of allopurinol for myocardial protection. J Thorac Cardiovasc Surg 1991; 101: 713–8

    PubMed  CAS  Google Scholar 

  76. Struthers AD, Donnan PT, Lindsay P, et al. Effect of allopurinol on mortality and hospitalisations in chronic heart failure: a retrospective cohort study. Heart 2002; 87 (3): 229–34

    Article  PubMed  CAS  Google Scholar 

  77. Dahlof B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan Intervention for Endpoint Reduction in Hypertension Study (LIFE): a randomised trial against atenolol. Lancet 2002; 359: 995–1003

    Article  PubMed  CAS  Google Scholar 

  78. Nainggolan L. Losartan impresses in LIFE. Heartwire 2002. Available online from: http://www.theheart.org [Accessed 2002 18 Aug]

Download references

Acknowledgements

Dr Gavin is supported by a project grant from the British Heart Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavin, A.R., Struthers, A.D. Hyperuricemia and Adverse Outcomes in Cardiovascular Disease. Am J Cordiovosc Drugs 3, 309–314 (2003). https://doi.org/10.2165/00129784-200303050-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129784-200303050-00001

Keywords

Navigation