Skip to main content
Log in

Flocking analysis for a generalized Motsch-Tadmor model with piecewise interaction functions and processing delays

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a generalized Motsch-Tadmor model with piecewise interaction functions and fixed processing delays is investigated. According to functional differential equation theory and correlation properties of the stochastic matrix, we obtained sufficient conditions for the system achieving flocking, including an upper bound of the time delay parameter. When the parameter is less than the upper bound, the system achieves asymptotic flocking under appropriate assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Acemoglu, A. Ozdaglar: Opinion dynamics and learning in social networks. Dyn. Games Appl. 1 (2011), 3–49.

    Article  MATH  Google Scholar 

  2. M. R. Cartabia: Cucker-Smale model with time delay. Discrete Contin. Dyn. Syst. 42 (2022), 2409–2432.

    Article  MATH  Google Scholar 

  3. Y. Chen, Y. Liu, X. Wang: Exponential stability for a multi-particle system with piece-wise interaction function and stochastic disturbance. Evol. Equ. Control Theory 11 (2022), 729–748.

    Article  MATH  Google Scholar 

  4. Y.-P. Choi, J. Haskovec: Cucker-Smale model with normalized communication weights and time delay. Kinet. Relat. Models 10 (2017), 1011–1033.

    Article  MATH  Google Scholar 

  5. Y.-P. Choi, Z. Li: Emergent behavior of Cucker-Smale flocking particles with heterogeneous time delays. Appl. Math. Lett. 86 (2018), 49–56.

    Article  MATH  Google Scholar 

  6. Y.-P. Choi, C. Pignotti: Emergent behavior of Cucker-Smale model with normalized weights and distributed time delays. Netw. Heterog. Media 14 (2019), 789–804.

    Article  MATH  Google Scholar 

  7. F. Cucker, S. Smale: Emergent behavior in flocks. IEEE Trans. Autom. Control 52 (2007), 852–862.

    Article  MATH  Google Scholar 

  8. F. Cucker, S. Smale: On the mathematics of emergence. Jpn. J. Math. (3) 2 (2007), 197–227.

    Article  MATH  Google Scholar 

  9. M. Dastani: Programming multi-agent systems. Knowledge Engineering Review 30 (2015), 394–418.

    Article  Google Scholar 

  10. J.-G. Dong, S.-Y. Ha, D. Kim: Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph. Discrete Contin. Dyn. Syst., Ser. B 24 (2019), 5569–5596.

    MATH  Google Scholar 

  11. J.-G. Dong, S.-Y. Ha, D. Kim: On the Cucker-Smale ensemble with q-closest neighbors under time-delayed communications. Kinet. Relat. Models 13 (2020), 653–676.

    Article  MATH  Google Scholar 

  12. S.-Y. Ha, J.-G. Liu: A simple proof of the Cucker-Smale flocking dynamics and mean-field limit. Commun. Math. Sci. 7 (2009), 297–325.

    Article  MATH  Google Scholar 

  13. S.-Y. Ha, E. Tadmor: From particle to kinetic and hydrodynamic description of flocking. Kinet. Relat. Models 1 (2008), 415–435.

    Article  MATH  Google Scholar 

  14. J. K. Hale, S. M. Verduyn Lunel: Introduction to Functional Differential Equations. Applied Mathematical Sciences 99. Springer, New York, 1993.

    MATH  Google Scholar 

  15. J. Haskovec: A simple proof of asymptotic consensus in the Hegselmann-Krause and Cucker-Smale models with normalization and delay. SIAM J. Appl. Dyn. Syst. 20 (2021), 130–148.

    Article  MATH  Google Scholar 

  16. J. Haskovec, I. Markou: Asymptotic flocking in the Cucker-Smale model with reaction-type delays in the non-oscillatory regime. Kinet. Relat. Models 13 (2020), 795–813.

    Article  MATH  Google Scholar 

  17. C. Jin: Flocking of the Motsch-Tadmor model with a cut-off interaction function. J. Stat. Phys. 171 (2018), 345–360.

    Article  MATH  Google Scholar 

  18. Z. Liu, Y. Liu, X. Li: Flocking and line-shaped spatial configuration to delayed Cucker-Smale models. Discrete Contin. Dyn. Syst., Ser. B 26 (2021), 3693–3716.

    MATH  Google Scholar 

  19. Z. Liu, Y. Liu, X. Wang: Emergence of time-asymptotic flocking for a general Cucker-Smale-type model with distributed time delays. Math. Methods Appl. Sci. 43 (2020), 8657–8668.

    Article  MATH  Google Scholar 

  20. Y. Liu, J. Wu: Flocking and asymptotic velocity of the Cucker-Smale model with processing delay. J. Math. Anal. Appl. 415 (2014), 53–61.

    Article  MATH  Google Scholar 

  21. Y. Liu, J. Wu, X. Wang: Collective periodic motions in a multiparticle model involving processing delay. Math. Methods Appl. Sci. 44 (2021), 3280–3302.

    Article  MATH  Google Scholar 

  22. J. Morales, J. Peszek, E. Tadmor: Flocking with short-range interactions. J. Stat. Phys. 176 (2019), 382–397.

    Article  MATH  Google Scholar 

  23. S. Motsch, E. Tadmor: A new model for self-organized dynamics and its flocking behavior. J. Stat. Phys. 144 (2011), 923–947.

    Article  MATH  Google Scholar 

  24. E. Tadmor: On the mathematics of swarming: Emergent behavior in alignment dynamics. Notices Am. Math. Soc. 68 (2021), 493–503.

    Article  MATH  Google Scholar 

  25. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75 (1995), 1226–1229.

    Article  Google Scholar 

  26. X. Wang, L. Wang, J. Wu: Impacts of time delay on flocking dynamics of a two-agent flock model. Commun. Nonlinear Sci. Numer. Simul. 70 (2019), 80–88.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yipeng Chen.

Additional information

This work was supported by the National Natural Science Foundation of P. R. China (No. 11671011) and Hunan Provincial Innovation Foundation for Postgraduate (CN) (No. CX20200011).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, Y. & Wang, X. Flocking analysis for a generalized Motsch-Tadmor model with piecewise interaction functions and processing delays. Appl Math 68, 51–73 (2023). https://doi.org/10.21136/AM.2022.0219-21

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2022.0219-21

Keywords

MSC 2020

Navigation