Skip to main content
Log in

A general homogenization result of spectral problem for linearized elasticity in perforated domains

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

The goal of this paper is to establish a general homogenization result for linearized elasticity of an eigenvalue problem defined over perforated domains, beyond the periodic setting, within the framework of the H0-convergence theory. Our main homogenization result states that the knowledge of the fourth-order tensor A0, the H0-limit of Aε, is sufficient to determine the homogenized eigenvalue problem and preserve the structure of the spectrum. This theorem is proved essentially by using Tartar’s method of test functions, and some general arguments of spectral analysis used in the literature on the homogenization of eigenvalue problems. Moreover, we give a result on a particular case of a simple eigenvalue of the homogenized problem. We conclude our work by some comments and perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Briane: Homogenization in general periodically perforated domains by a spectral approach. Calc. Var. Partial Differ. Equ. 15 (2002), 1–24.

    Article  MathSciNet  Google Scholar 

  2. M. Briane, A. Damlamian, P. Donato: H-convergence in perforated domains. Nonlinear Partial Differential Equations and Their Applications. Pitman Research Notes in Mathematics Series 391. Longman, Harlow, 1998, pp. 62–100.

    Google Scholar 

  3. A. Cancedda: Spectral homogenization for a Robin-Neumann problem. Boll. Unione Mat. Ital. 10 (2017), 199–222.

    Article  MathSciNet  Google Scholar 

  4. D. Cioranescu, J. Saint Jean Paulin: Homogenization of Reticuled Structures. Applied Mathematical Sciences 136. Springer, New York, 1999.

    Book  Google Scholar 

  5. A. Damlamian, P. Donato: Which sequences of holes are admissible for periodic homogenization with Neumann boundary condition? ESAIM, Control Optim. Calc. Var. 8 (2002), 555–585.

    MATH  Google Scholar 

  6. H. Douanla: Homogenization of Steklov spectral problems with indefinite density function in perforated domains. Acta Appl. Math. 123 (2013), 261–284.

    Article  MathSciNet  Google Scholar 

  7. M. El Hajji: Homogenization of linearized elasticity systems with traction condition in perforated domains. Electron. J. Differ. Equ. 1999 (1999), Article ID 41, 11 pages.

  8. M. El Hajji, P. Donato: H0-convergence for the linearized elasticity system. Asymptotic Anal. 21 (1999), 161–186.

    MathSciNet  MATH  Google Scholar 

  9. G. A. Francfort, F. Murat: Homogenization and optimal bounds in linear elasticity. Arch. Ration. Mech. Anal. 94 (1986), 307–334.

    Article  MathSciNet  Google Scholar 

  10. C. Georgelin: Contribution à l’étude de quelques problèmes en élasticité tridimensionnelle: Thèse de Doctorat. Université de Paris IV, Paris, 1989. (In French.)

    Google Scholar 

  11. H. Haddadou: Iterated homogenization for the linearized elasticity by \(H_e^0\)-convergence. Ric. Mat. 54 (2005), 137–163.

    MathSciNet  MATH  Google Scholar 

  12. H. Haddadou: A property of the H-convergence for elasticity in perforated domains. Electron. J. Differ. Equ. 137 (2006), Article ID 137, 11 pages.

  13. V. V. Jikov, S. M. Kozlov, O. A. Oleinik: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin, 1994.

    Book  Google Scholar 

  14. S. Kesavan: Homogenization of elliptic eigenvalue problems I. Appl. Math. Optim. 5 (1979), 153–167.

    Article  MathSciNet  Google Scholar 

  15. F. Léné: Comportement macroscopique de matériaux élastiques comportant des inclusions rigides ou des trous répartis périodiquement. C. R. Acad. Sci., Paris, Sér. A 286 (1978), 75–78. (In French.)

    MathSciNet  MATH  Google Scholar 

  16. F. Murat, L. Tartar: H-convergence. Topics in the Mathematical Modelling of Composite Materials. Progress in Nonlinear Differential Equations and Their Applications 31. Birkhäuser, Boston, 1997, pp. 21–43.

    Book  Google Scholar 

  17. A. K. Nandakumar: Homogenization of eigenvalue problems of elasticity in perforated domains. Asymptotic Anal. 9 (1994), 337–358.

    Article  MathSciNet  Google Scholar 

  18. O. A. Oleinik, A. S. Shamaev, G. A. Yosifian: Mathematical Problems in Elasticity and Homogenization. Studies in Mathematics and Its Applications 26. North-Holland, Amsterdam, 1992.

    MATH  Google Scholar 

  19. S. Spagnolo: Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 22 (1968), 571–597. (In Italian.)

    MathSciNet  MATH  Google Scholar 

  20. T. A. Suslina: Spectral approach to homogenization of elliptic operators in a perforated space. Rev. Math. Phys. 30 (2018), Article ID 1840016, 57 pages.

  21. L. Tartar: Problèmes d’homogénéisation dans les équations aux dérivées partielles. Cours Peccot, Collège de France, Paris, 1977. (In French.)

    Google Scholar 

  22. L. Tartar: The General Theory of Homogenization: A Personalized Introduction. Lecture Notes of the Unione Matematica Italiana 7. Springer, Berlin, 2009.

    MATH  Google Scholar 

  23. M. Vanninathan: Homogenization of eigenvalue problems in perforated domains. Proc. Indian Acad. Sci., Math. Sci. 90 (1981), 239–271.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees who provided valuable suggestions that greatly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Mourad Lhannafi Ait Yahia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait Yahia, M.M.L., Haddadou, H. A general homogenization result of spectral problem for linearized elasticity in perforated domains. Appl Math 66, 701–724 (2021). https://doi.org/10.21136/AM.2021.0009-20

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2021.0009-20

Keywords

MSC 2020

Navigation