Skip to main content
Log in

Existence of Solutions for Nonlinear Nonmonotone Evolution Equations in Banach Spaces with Anti-Periodic Boundary Conditions

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

The paper is devoted to the study of the existence of solutions for nonlinear nonmonotone evolution equations in Banach spaces involving anti-periodic boundary conditions. Our approach in this study relies on the theory of monotone and maximal monotone operators combined with the Schaefer fixed-point theorem and the monotonicity method. We apply our abstract results in order to solve a diffusion equation of Kirchhoff type involving the Dirichlet p-Laplace operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Aftabizadeh, S. Aizicovici, N. H. Pavel: On a class of second-order anti-periodic boundary value problems. J. Math. Anal. Appl. 171 (1992), 301–320.

    Article  MathSciNet  Google Scholar 

  2. S. Aizicovici, M. McKibben, S. Reich: Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 43 (2001), 233–251.

    Article  MathSciNet  Google Scholar 

  3. S. Aizicovici, N. H. Pavel: Anti-periodic solutions to a class of nonlinear differential equations in Hilbert space. J. Funct. Anal. 99 (1991), 387–408.

    Article  MathSciNet  Google Scholar 

  4. S. Boussandel: Existence of solutions for evolution equations in Hilbert spaces with antiperiodic boundary conditions and applications. Appl. Math., Praha 63 (2018), 423–437.

    Article  MathSciNet  Google Scholar 

  5. F. E. Browder, W. V. Petryshyn: The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Am. Math. Soc. 72 (1966), 571–575.

    Article  MathSciNet  Google Scholar 

  6. Y. Chen: Anti-periodic solutions for semilinear evolution equations. J. Math. Anal. Appl. 315 (2006), 337–348.

    Article  MathSciNet  Google Scholar 

  7. Y. Chen, Y. J. Cho, J. S. Jung: Antiperiodic solutions for semilinear evolution equations. Math. Comput. Modelling 40 (2004), 1123–1130.

    Article  MathSciNet  Google Scholar 

  8. Y. Chen, J. J. Nieto, D. O’Regan: Anti-periodic solutions for fully nonlinear first-order differential equations. Math. Comput. Modelling 46 (2007), 1183–1190.

    Article  MathSciNet  Google Scholar 

  9. Y. Chen, J. J. Nieto, D. O’Regan: Anti-periodic solutions for evolution equations associated with maximal monotone mappings. Appl. Math. Lett. 24 (2011), 302–307.

    Article  MathSciNet  Google Scholar 

  10. Y. Chen, D. O’Regan, R. P. Agarwal: Anti-periodic solutions for evolution equations associated with monotone type mappings. Appl. Math. Lett. 23 (2010), 1320–1325.

    Article  MathSciNet  Google Scholar 

  11. Y. Chen, D. O’Regan, R. P. Agarwal: Anti-periodic solutions for semilinear evolution equations in Banach spaces. J. Appl. Math. Comput. 38 (2012), 63–70.

    Article  MathSciNet  Google Scholar 

  12. Y. Chen, X. Wang, H. Xu: Anti-periodic solutions for semilinear evolution equations. J. Math. Anal. Appl. 273 (2002), 627–636.

    Article  MathSciNet  Google Scholar 

  13. P. Drábek, J. Milota: Methods of Nonlinear Analysis. Applications to Differential Equations. Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser, Basel, 2007.

    MATH  Google Scholar 

  14. H. Gajewski, K. Gröger, K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Mathematische Lehrbücher und Monographien, II. Abteilung, Mathematische Monographien 38, Akademie, Berlin, 1974. (In German.)

    MATH  Google Scholar 

  15. D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Classics in Mathematic, Springer, Berlin, 2001.

    MATH  Google Scholar 

  16. A. Haraux: Anti-periodic solutions of some nonlinear evolution equations. Manuscr. Math. 63 (1989), 479–505.

    Article  MathSciNet  Google Scholar 

  17. Y. Liu, X. Liu: New existence results of anti-periodic solutions of nonlinear impulsive functional differential equations. Math. Bohem. 138 (2013), 337–360.

    MathSciNet  MATH  Google Scholar 

  18. M. Nakao: Existence of an anti-periodic solution for the quasilinear wave equation with viscosity. J. Math. Anal. Appl. 204 (1996), 754–764.

    Article  MathSciNet  Google Scholar 

  19. H. Okochi: On the existence of periodic solutions to nonlinear abstract parabolic equations. J. Math. Soc. Japan 40 (1988), 541–553.

    Article  MathSciNet  Google Scholar 

  20. H. Okochi: On the existence of anti-periodic solutions to a nonlinear evolution equation associated with odd subdifferential operators. J. Funct. Anal. 91 (1990), 246–258.

    Article  MathSciNet  Google Scholar 

  21. H. Okochi: On the existence of anti-periodic solutions to nonlinear parabolic equations in noncylindrical domains. Nonlinear Anal., Theory Methods Appl. 14 (1990), 771–783.

    Article  MathSciNet  Google Scholar 

  22. J. Simon: Compact sets in the space Lp(0, T;B). Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65–96.

    Article  Google Scholar 

  23. P. Souplet: An optimal uniqueness condition for the antiperiodic solutions of parabolic evolution equations. C. R. Acad. Sci., Paris, Sér. I 319 (1994), 1037–1041. (In French.)

    MATH  Google Scholar 

  24. P. Souplet: Optimal uniqueness condition for the antiperiodic solutions of some nonlinear parabolic equations. Nonlinear Anal., Theory Methods Appl. 32 (1998), 279–286.

    Article  MathSciNet  Google Scholar 

  25. Y. Tian, J. Henderson: Anti-periodic solutions for a gradient system with resonance via a variational approach. Math. Nachr. 286 (2013), 1537–1547.

    MathSciNet  MATH  Google Scholar 

  26. R. Wu: The existence of T-anti-periodic solutions. Appl. Math. Lett. 23 (2010), 984–987.

    Article  MathSciNet  Google Scholar 

  27. R. Wu, F. Cong, Y. Li: Anti-periodic solutions for second-order differential equations. Appl. Math. Lett. 23 (2011), 860–863.

    Article  MathSciNet  Google Scholar 

  28. E. Zeidler: Nonlinear Functional Analysis and Its Applications. II/A: Linear Monotone Operators. Springer, New York, 1990.

    MATH  Google Scholar 

  29. L. Zhenhai: Anti-periodic solutions to nonlinear evolution equations. J. Funct. Anal. 258 (2010), 2026–2033.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahbi Boussandel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boussandel, S. Existence of Solutions for Nonlinear Nonmonotone Evolution Equations in Banach Spaces with Anti-Periodic Boundary Conditions. Appl Math 63, 523–539 (2018). https://doi.org/10.21136/AM.2018.0136-18

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2018.0136-18

Keywords

MSC

Navigation