Skip to main content
Log in

A pruning algorithm with L 1/2 regularizer for extreme learning machine

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Compared with traditional learning methods such as the back propagation (BP) method, extreme learning machine provides much faster learning speed and needs less human intervention, and thus has been widely used. In this paper we combine the L 1/2 regularization method with extreme learning machine to prune extreme learning machine. A variable learning coefficient is employed to prevent too large a learning increment. A numerical experiment demonstrates that a network pruned L 1/2 regularization has fewer hidden nodes but provides better performance than both the original network and the network pruned by L 2 regularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bishop, C.M., 1995. Neural Networks for Pattern Recognition. Oxford University Press, UK.

    Google Scholar 

  • Chen, S., Donoho, D.L., Saunders, M.A., 2001. Atomic decomposition by basis pursuit. SIAM Rev., 43(1):129–159. [doi:10.1137/S003614450037906X]

    Article  MATH  MathSciNet  Google Scholar 

  • Donoho, D.L., Huo, X., 2001. Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inform. Theory, 47(7):2845–2862. [doi:10.1109/18.959265]

    Article  MATH  MathSciNet  Google Scholar 

  • Horata, P., Chiewchanwattana, S., Sunat, K., 2013. Robust extreme learning machine. Neurocomputing, 102:31–44. [doi:10.1016/j.neucom.2011.12.045]

    Article  Google Scholar 

  • Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal approximators. Neur. Networks, 2(5):359–366. [doi:10.1016/0893-6080(89)90020-8]

    Article  Google Scholar 

  • Huang, G.B., Siew, C.K., 2004. Extreme learning machine: RBF network case. Proc. 8th Int. Conf. on Control, Automation, Robotics and Vision, p.1029–1036. [doi:10.1109/ICARCV.2004.1468985]

    Google Scholar 

  • Huang, G.B., Zhu, Q.Y., Siew, C.K., 2004. Extreme learning machine: a new learning scheme of feedforward neural networks. Proc. IEEE Int. Joint Conf. on Neural Networks, p.985–990. [doi:10.1109/IJCNN.2004.1380068]

    Google Scholar 

  • Huang, G.B., Zhu, Q.Y., Siew, C.K., 2006. Extreme learning machine: theory and applications. Neurocomputing, 70(1–3):489–501. [doi:10.1016/j.neucom.2005.12.126]

    Article  Google Scholar 

  • Huang, G.B., Wang, D.H., Lan, Y., 2011. Extreme learning machines: a survey. Int. J. Mach. Learn. Cybern., 2(2):107–122. [doi:10.1007/s13042-011-0019-y]

    Article  Google Scholar 

  • Miche, Y., Sorjamaa, A., Bas, P., et al., 2010. OP-ELM: optimally pruned extreme learning machine. IEEE Trans. Neur. Networks, 21(1):158–162. [doi:10.1109/TNN.2009.2036259]

    Article  Google Scholar 

  • Miche, Y., van Heeswijk, M., Bas, P., et al., 2011. TROPELM: a double-regularized ELM using LARS and Tikhonov regularization. Neurocomputing, 74(16):2413–2421. [doi:10.1016/j.neucom.2010.12.042]

    Article  Google Scholar 

  • Rasmussen, C.E., Williams, C.K.I., 2006. Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  • Soria-Olivas, E., Gomez-Sanchis, J., Jarman, I.H., et al., 2011. BELM: Bayesian extreme learning machine. IEEE Trans. Neur. Networks, 22(3):505–509. [doi:10.1109/TNN.2010.2103956]

    Article  Google Scholar 

  • Tibshirani, R., 1996. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B, 58(1):267–288.

    MATH  MathSciNet  Google Scholar 

  • Wu, W., 2003. Computation of Neural Networks. Higher Education Press, Beijing (in Chinese).

    Google Scholar 

  • Xu, G.B., Zhou, D.H., 2010. Fault prediction for statedependent fault based on online learning neural network. J. Zhejiang Univ. (Eng. Sci.), 44(7):1251–1254 (in Chinese).

    MathSciNet  Google Scholar 

  • Xu, Z.B., 2010. Data modeling: visual psychology approach and L 1/2 regularization theory. Proc. Int. Congress of Mathmaticians, p.3151–3184.

    Google Scholar 

  • Xu, Z.B., Zhang, H., Wang, Y., et al., 2010. L 1/2 regularization. Sci. China Inform. Sci., 53(6):1159–1169. [doi:10.1007/s11432-010-0090-0]

    Article  MathSciNet  Google Scholar 

  • Yan, G.F., Zhang, S.L., Liu, M.Q., 2004. Standard neural network model and its application. J. Zhejiang Univ. (Eng. Sci.), 38(3):297–301 (in Chinese).

    Google Scholar 

  • Zhang, W.B., Ji, H.B., 2013. Fuzzy extreme learning machine for classification. Electron. Lett., 49(7):448–450. [doi:10.1049/el.2012.3642]

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11171367) and the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Yt., Wu, W., Yang, Wy. et al. A pruning algorithm with L 1/2 regularizer for extreme learning machine. J. Zhejiang Univ. - Sci. C 15, 119–125 (2014). https://doi.org/10.1631/jzus.C1300197

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300197

Key words

CLC number

Navigation