Skip to main content
Log in

The role of α-synuclein assembly and metabolism in the pathogenesis of Lewy body disease

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) are members of a family of disorders characterized by the presence of inclusion bodies, or Lewy bodies (LBs), filled with aggregates of α-synuclein. These diseases are a leading cause of movement disorders and dementia in the aging population, and it is crucial to understand the factors leading to the accumulation and assembly of these α-synuclein aggregates. Previous studies have uncovered much about the factors leading to aggregation and the mechanisms causing neurotoxicity of these inclusion bodies; however, little is known about factors that promote the degradation and prevent the aggregation of α-synuclein. The present article provides a review of recent efforts in the investigation of factors involved in α-synuclein metabolism and the mechanisms involved in preventing accumulation of α-synuclein and degrading this molecule. Understanding these processes might provide targets for the development of novel therapies for disorders such as DLB and PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auluck P. K. and N. M. Bonini (2002) Pharmacological prevention of Parkinson disease in Drosophila. Nat Med. 8, 1185–1186.

    Article  PubMed  CAS  Google Scholar 

  • Auluck P. K., Chan H. Y., et al. (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295(5556), 865–868.

    Article  PubMed  CAS  Google Scholar 

  • Bence N. F., Sampat R. M., et al. (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1467–1468.

    Article  Google Scholar 

  • Bennett M. C., Bishop J. F., et al. (1999) Degradation of alpha-synuclein by proteasome. J. Biol. Chem. 274(48), 33,855–33,858.

    Article  CAS  Google Scholar 

  • Bond U., Agell N., et al. (1988) Ubiquitin in stressed chicken embryo fibroblasts. J. Biol. Chem. 263, 2384–2388.

    PubMed  CAS  Google Scholar 

  • Borden K. L. and Freemont P. S. (1996) The RING finger domain: a recent example of a sequence-structure family. Curr. Opin, Struct. Biol. 6, 395–401.

    Article  CAS  Google Scholar 

  • Chung K. K., Zhang Y., et al. (2001) Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat. Med. 7, 1144–1150.

    Article  PubMed  CAS  Google Scholar 

  • Conway K., Harper J., et al. (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat. Med. 4, 1318–1320.

    Article  PubMed  CAS  Google Scholar 

  • Cummings C. J., Mancini M. A., et al. (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat. Genet. 19, 148–154.

    Article  PubMed  CAS  Google Scholar 

  • Cummings C. J., Sun Y., et al. (2001) Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum. Mol. Genet. 10, 1511–1518.

    Article  PubMed  CAS  Google Scholar 

  • Dikic I. (2003) Mechanisms controlling EGF receptor endocytosis and degradation. Biochem. Soc. Trans. 31(Pt. 6), 1178–1181.

    Article  PubMed  CAS  Google Scholar 

  • Feany M. and Bender W. (2000) A Drosophila model of Parkinson’s disease. Nature 404, 394–398.

    Article  PubMed  CAS  Google Scholar 

  • Fink A. L. (1999) Chaperone-mediated protein folding. Physiol. Rev. 79, 425–449.

    PubMed  CAS  Google Scholar 

  • Finley D., Ozkaynak E., et al. (1987) The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48, 1035–1046.

    Article  PubMed  CAS  Google Scholar 

  • Ghee M., Fournier A., et al. (2000) Rat alpha-synuclein interacts with Tat binding protein 1, a component of the 26S proteasomal complex. J. Neurochem. 75, 2221–2224.

    Article  PubMed  CAS  Google Scholar 

  • Giasson B. I., Duda J. E., et al. (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing a53t human alpha-synuclein. Neuron 34(4), 521–533.

    Article  PubMed  CAS  Google Scholar 

  • Glabe C. (2001) Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer’s disease. J. Mol. Neurosci. 17, 137–145.

    Article  PubMed  CAS  Google Scholar 

  • Grune T., Merker K., et al. (2003) Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem. Biophys. Res. Commun. 305, 709–718.

    Article  PubMed  CAS  Google Scholar 

  • Haglund K., Di Fiore P. P., et al. (2003) Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem. Sci. 28, 598–603.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M., Bar-On P., Ho G., Takenouchi T., Rockenstein E., Crews L., Masliah E., (2004) β-synuclein regulates Akt activity in neuronal cells. A possible mechanism for neuroprotection in Parkinson’s disease. J. Biol. Chem. 279(22), 23,622–23,629.

    Article  CAS  Google Scholar 

  • Hashimoto M., Rockenstein E., et al. (2003) Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. Neuromol. Med. 4(1,2), 21–36.

    Article  CAS  Google Scholar 

  • Hashimoto M., Rockenstein E., et al. (2001) β-Synuclein inhibits alpha-synuclein aggregation: a possible role as an anti-parkinsonian factor. Neuron 32(2), 213–223.

    Article  PubMed  CAS  Google Scholar 

  • Imai Y., Soda M., et al. (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105, 891–902.

    Article  PubMed  CAS  Google Scholar 

  • Iqbal K. and Grundke-Iqbal I. (1991) Ubiquitination and abnormal phosphorylation of paired helical filaments in Alzheimer’s disease. Mol. Neurobiol. 5, 399–410.

    Article  PubMed  CAS  Google Scholar 

  • Irizarry M., Growdon W., et al. (1998) Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson’s disease and cortical Lewy body disease contain alpha-synuclein immunoreactivity. J. Neuropathol. Exp. Neurol. 57, 334–337.

    PubMed  CAS  Google Scholar 

  • Ischiropoulos H. (2003) Oxidative modifications of alpha-synuclein. Ann. N. Y. Acad. Sci. 991, 93–100.

    Article  PubMed  CAS  Google Scholar 

  • Iwai A. (2000) Properties of NACP/alpha-synuclein and its role in Alzheimer’s disease. Biochim. Biophys. Acta 1502, 95–109.

    PubMed  CAS  Google Scholar 

  • Iwata A., Maruyama M., et al. (2003) Alpha-synuclein degradation by serine protease neurosin: implication for pathogenesis of synucleinopathies. Hum. Mol. Genet. 12, 2625–2635.

    Article  PubMed  CAS  Google Scholar 

  • Kanda S., Bishop J. F., et al. (2000) Enhanced vulnerability to oxidative stress by alpha-synuclein mutations and C-terminal truncation. Neuroscience 97, 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Kim J. H., Park K. C., et al. (2003) Deubiquitinating enzymes as cellular regulators. J. Biochem. (Tokyo) 134, 9–18.

    CAS  Google Scholar 

  • Kim S. J., Sung J. Y., et al. (2003) Parkin cleaves intracellular alpha-synuclein inclusions via the activation of calpain. J. Biol. Chem. 278, 41,890–41,899.

    CAS  Google Scholar 

  • Kitada T., Asakawa S., et al. (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608.

    Article  PubMed  CAS  Google Scholar 

  • Klucken J., Shin Y., Masliah E., Hyman B. T., and McLean P. J., (2004) Hsp70 reduces α-synuclein aggregation and toxicity. J. Biol. Chem. 279(24), 25,497–25,502.

    Article  CAS  Google Scholar 

  • Kruger R., Kuhn W., et al. (1998) Ala30Pro mutation in the gene encoding α-synuclein in Parkinsons’s disease. Nat. Genet. 18, 106–108.

    Article  PubMed  CAS  Google Scholar 

  • Kuzuhara S., Mori H., et al. (1988) Lewy bodies are ubiquinated. A light and electron microscopic immunocytochemical study. Acta Neuropathol. 75, 345–353.

    Article  PubMed  CAS  Google Scholar 

  • Lee G., Junn E., et al. (2002) Synphilin-1 degradation by the ubiquitin-proteasome pathway and effects on cell survival. J. Neurochem. 83, 346–352.

    Article  PubMed  CAS  Google Scholar 

  • Lee M. S. and Tsai L. H. (2003) Cdk5: one of the links between senile plaques and neurofibrillary tangles? J. Alzheimers Dis. 5, 127–137.

    PubMed  CAS  Google Scholar 

  • Leroy E., Boyer R., et al. (1998) The ubiquitin pathway in Parkinsons’s disease. Nature 395, 451–452.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y., Fallon L., et al. (2002) The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell 111, 209–218.

    Article  PubMed  CAS  Google Scholar 

  • Marchese A., Raiborg C., et al. (2003) The E3 ubiquitin ligase AIP4 mediates ubiquitination and sorting of the G protein-coupled receptor CXCR4. Dev. Cell 5, 709–722.

    Article  PubMed  CAS  Google Scholar 

  • Masliah E., Iwai A., et al. (1996) Altered presynaptic protein NACP is associated with plaque formation and neurodegeneration in Alzheimer’s disease. Am. J. Pathol. 148, 201–210.

    PubMed  CAS  Google Scholar 

  • Masliah E., Rockenstein E., et al. (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: Implications for neurodegenerative disorders. Science 287, 1265–1269.

    Article  PubMed  CAS  Google Scholar 

  • Masliah E., Rockenstein E., et al. (2001) β amyloid peptides enhance α-synuclein accumulation and neuronal deficits in a transgenic mouse model likning Alzheimer’s and Parkinson’s disease. Proc. Natl. Acad. Sci. U.S.A. 98, 12,245–12,250.

    Article  CAS  Google Scholar 

  • McKeith I. G. (2000) Spectrum of Parkinson’s disease, Parkinson’s dementia, and Lewy body dementia. Neurol. Clin. 18, 865–902.

    Article  PubMed  CAS  Google Scholar 

  • McNaught K. and Jenner P. (2001) Proteasomal function is impared in substantial nigra in Parkinson’s disease. Neurosci. Lett. 297, 191–194.

    Article  PubMed  CAS  Google Scholar 

  • Mishizen-Eberz A. J., Guttmann R. P., et al. (2003) Distinct cleavage patterns of normal and pathologic forms of alpha-synuclein by calpain I in vitro. J. Neurochem. 86, 836–847.

    Article  PubMed  CAS  Google Scholar 

  • Mosesson Y., Shtiegman K., et al. (2003) Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation. J. Biol. Chem. 278, 21,323–21,326.

    Article  CAS  Google Scholar 

  • Narayanan V. and Scarlata S. (2001) Membrane binding and self-association of alpha-synucleins. Biochemistry 40, 9927–9934.

    Article  PubMed  CAS  Google Scholar 

  • Narhi L., Wood S. J., et al. (1999) Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J. Biol. Chem. 274, 9843–9846.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa K., Yamada T., et al. (2000) Localization of a novel type trypsin-like serine protease, neurosin, in brain tissues of Alzheimer’s disease and Parkinson’s disease. Psychiatry Clin. Neurosci. 54, 419–426.

    Article  PubMed  CAS  Google Scholar 

  • Orth M. and Schapira A. H. (2001) Mitochondria and degenerative disorders. Am. J. Med. Genet. 106, 27–36.

    Article  PubMed  CAS  Google Scholar 

  • Osterova-Golts N., Petrucelli L., et al. (2000) The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity. J. Neurosci. 20, 6048–6054.

    Google Scholar 

  • Paxinou E., Chen Q., et al. (2001) Induction of alpha-synuclein aggregation by intracellular nitrative insult. J. Neurosci. 21, 8053–8061.

    PubMed  CAS  Google Scholar 

  • Perrin R., Woods W., et al. (2000) Interaction of human alpha-synuclein and Parkinson’s disease variants with phospholipids: structural analysis using site-directed mutagenesis. J. Biol. Chem. 275, 34,393–34,398.

    Article  CAS  Google Scholar 

  • Pickart C. M. (2001) Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533.

    Article  PubMed  CAS  Google Scholar 

  • Polymeropoulos M., Lavedan C., et al. (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047.

    Article  PubMed  CAS  Google Scholar 

  • Saigoh K., Wang Y. L., et al. (1999) Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat. Genet. 23, 47–51.

    PubMed  CAS  Google Scholar 

  • Sampathu D. M., Giasson B. I., et al. (2003) Ubiquitination of alpha-synuclein is not required for formation of pathological inclusions in alpha-synucleinopathies. Am. J. Pathol. 163, 91–100.

    PubMed  CAS  Google Scholar 

  • Sharon R., Goldberg M. S., et al. (2001) alpha-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proc. Natl. Acad. Sci. U.S.A. 98, 9110–9115.

    Article  PubMed  CAS  Google Scholar 

  • Shenoy S. K., McDonald P. H., et al. (2001) Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science 294, 1307–1313.

    Article  PubMed  CAS  Google Scholar 

  • Shimura H., Hattori N., et al. (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 25, 302–305.

    Article  PubMed  CAS  Google Scholar 

  • Shimura H., Schlossmacher M. G., et al. (2001) Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 293, 263–269.

    Article  PubMed  CAS  Google Scholar 

  • Snyder H., Mensah K., et al. (2003) Aggregated and monomeric alpha-synuclein bind to the S6′ proteasomal protein and inhibit proteasomal function. J. Biol. Chem. 278, 11,753–11,759.

    CAS  Google Scholar 

  • Souza J., Giasson B., et al. (2000) Chaperone-like activity of synucleins. FEBS Lett. 474, 116–119.

    Article  PubMed  CAS  Google Scholar 

  • Spillantini M., Crowther R., et al. (1998) Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. U.S.A. 95, 6469–6473.

    Article  PubMed  CAS  Google Scholar 

  • Spillantini M., Schmidt M., et al. (1997) α-Synuclein in Lewy bodies. Nature 388, 839,840.

    Article  PubMed  CAS  Google Scholar 

  • Staropoli J., McDermott C., et al. (2003) Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron 37, 735–749.

    Article  PubMed  CAS  Google Scholar 

  • Takeda A., Hashimoto M., et al. (1998a) Abnormal distribution of the non-Aβ component of Alzheimer’s disease amyloid precursor/α-synuclein in Lewy body disease as revealed by proteinase K and formic acid pretreatment. Lab. Invest. 78, 1169–1177.

    PubMed  CAS  Google Scholar 

  • Takeda A., Mallory M., et al. (1998b) Abnormal accumulation of NACP/α-synuclein in neurodegenerative disorders. Am. J. Pathol. 152, 367–372.

    PubMed  CAS  Google Scholar 

  • Tofaris G. K., Layfield R., et al. (2001) α-Synuclein metabolism and aggregation is linked to ubiquitin-independent degradation by the proteasome. FEBS Lett. 509, 22–26.

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski J. and Lee V. (1998) Aggregation of neurofilament and alpha-synuclein proteins in Lewy bodies: implications for pathogenesis of Parkinson disease and Lewy body dementia. Arch. Neurol. 55, 151–152.

    Article  PubMed  CAS  Google Scholar 

  • Ueda K., Masliah E., et al. (1993) Novel amyloid component (NAC) differentiates Alzheimer’s disease from normal aging plaques. Soc. Neurosci. Abstr. 19, 1254.

    Google Scholar 

  • Uversky V. N., Li J., et al. (2002) Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J. Biol. Chem. 277, 11,970–11,978.

    Article  CAS  Google Scholar 

  • Volles M. J., Lee S. J., et al. (2001) Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 40, 7812–7819.

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi K., Hansen L., et al. (1997) Neurofibrillary tangles in the dentate granule cells in Alzheimer’s disease, Lewy body disease and progressive supranuclear palsy. Acta Neuropathol. 93, 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Warrick J. M., Chan H. Y., et al. (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet. 23, 425–428.

    Article  PubMed  CAS  Google Scholar 

  • Weinreb P., Zhen W., et al. (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35, 13,709–13,715.

    Article  CAS  Google Scholar 

  • Yamazaki T., Haass C., et al. (1997) Specific increase in amyloid beta-protein 42 secretion ratio by calpain inhibition. Biochemistry 36, 8377–8383.

    Article  PubMed  CAS  Google Scholar 

  • Yamin G., Glaser C. B., et al. (2003) Certain metals trigger fibrillation of methionine-oxidized alpha-synuclein. J. Biol. Chem. 278, 27,360–27,365.

    Article  CAS  Google Scholar 

  • Yang Y., Nishimura I., et al. (2003) Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila. Neuron 37, 911–924.

    Article  PubMed  CAS  Google Scholar 

  • Zarghooni M., Soosaipillai A., et al. (2002) Decreased concentration of human kallikrein 6 in brain extracts of Alzheimer’s disease patients. Clin Biochem. 35, 225–231.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y., Gao J., et al. (2000) Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc. Natl. Acad. Sci. U.S.A. 97, 13,354–13,359.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliezer Masliah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, M., Kawahara, K., Bar-On, P. et al. The role of α-synuclein assembly and metabolism in the pathogenesis of Lewy body disease. J Mol Neurosci 24, 343–352 (2004). https://doi.org/10.1385/JMN:24:3:343

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:24:3:343

Index Entries

Navigation