Skip to main content
Log in

Changes in thrombolytic and inflammatory markers after initiation of indinavir- or amprenavir-based antiretroviral therapy

  • Original Contributions
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

HIV-infected subjects who have lipodystrophy and insulin resistance on prolonged antiretroviral therapy have elevated levels of tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAl-1) antigens, markers of impaired thrombolysis that are associated with hyperinsulinemia and increased cardiovascular risk. We studied HIV-infected, protease inhibitor (PI)-naive adults treated with indinavir (n=11) or amprenavir (n=14) plus two nucleoside reverse transcriptase inhibitors enrolled in two independent prospective trials. Antiretroviral and immune responses were similar in both studies. Over 8 wk, indinavir was associated with decreased insulin sensitivity, whereas amprenavir was not. Levels of tPA antigen declined by approx 25% with both treatments (p<0.05 for each); levels of PAl-1 antigen did not change. Levels of the inflammatory marker soluble tumor necrosis factor-alpha receptor II (sTNFr2) correlated positively with tPA antigen (r=0.33, p=0.02), and mean (±SD) plasma concentrations of sTNFr also declined with treatment (4.44±1.11 ng/mL pretherapy, 3.75±1.21 posttherapy, p=0.007). Short-term improvement in a marker of impaired thrombolysis and increased vascular risk can occur during PI-based antiretroviral therapy, perhaps as a consequence of improvement in HIV-related inflammation. This improvement occurred independent of development of insulin resistance, which occurred only with indivinavir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Celermajer, D.S. (1997). Endothelial dysfunction: does it matter? Is it reversible? J. Am. Coll. Cardiol. 30:325–333.

    Article  PubMed  CAS  Google Scholar 

  2. Kinlay, S. and Ganz, P. (1997). Role of endothelial dysfunction in coronary artery disease and implications for therapy. Am. J. Cardiol. 80:111–161.

    Article  Google Scholar 

  3. Thompson, S.G., Kienast, J., Pyke, S.D., Haverkate, F., and van de Loo, J.C. (1995) Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. N. Engl. J. Med. 332:635–641.

    Article  PubMed  CAS  Google Scholar 

  4. Jansson, J.H., Olofsson, B.O., and Nilsson, T.K. (1993). Predictive value of tissue plasminogen activator mass concentration on long-term mortality in patients with coronary artery disease. A 7-year follow-up. Circulation 88:2030–2034.

    PubMed  CAS  Google Scholar 

  5. Ridker, P.M., Hennekens, C.H., Stampfer, M.J., Manson, J.E., and Vaughan, D.E. (1994). Prospective study of endogenous tissue plasminogen activator and risk of stroke. Lancet 343:940–943.

    Article  PubMed  CAS  Google Scholar 

  6. Johansson, L., Jansson, J.H., Boman, K., Nilsson, T.K., Stegmayr, B., and Hallmans, G. (2000). Tissue plasminogen activator, plasminogen activator inhibitor-1, and tissue plasminogen activator/plasminogen activator inhibitor-1 complex as risk factors for the development of a first stroke. Stroke 31:26–32.

    PubMed  CAS  Google Scholar 

  7. Kohler, H.P. and Grant, P.J. (2000). Plasminogen-activator inhibitor type 1 and coronary artery disease. N. Engl. J. Med. 342:1792–1801.

    Article  PubMed  CAS  Google Scholar 

  8. Meigs, J.B., Mittleman, M.A., Nathan, D.M., Tofler, G.H., Singer, D.E., Murphy-Sheehy, P.M., et al. (2000). Hyperinsulinemia, hyperglucemia, and impaired hemostasis: the Framingham Offspring Study. JAMA 283:221–228.

    Article  PubMed  CAS  Google Scholar 

  9. Greenberg, C.S. and Orthner, C.L. (1999). Blood coagulation and fibrinolysis, in Wintrobe's Clinical Hematology (Lee, G.R., ed.) Williams and Wilkins. Baltimore, Maryland, pp 1790–1792.

    Google Scholar 

  10. Chandler, W.L., Levy, W.C., Veith, R.C., and Stratton, J.R. (1993). A kinetic model of the circulatory regulation of tissue plasminogen activator during exercise, epinephrine infusion, and endurance training. Blood 81:3293–3302.

    PubMed  CAS  Google Scholar 

  11. Koppel, K., Bratt, G., Schulman, S., Bylund, H., and Sandstrom, E. (2002). Hypofibrinolytic state in HIV-1-infected patients treated with protease inhibitor-containing highly active antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 29:441–449.

    PubMed  CAS  Google Scholar 

  12. Hadigan, C., Meigs, J.B., Rabe, J., D'Agostino, R.B., Wilson, P.W., Lipinska, J., et al. (2001). Increased PAI-1 and tPA antigen levels are reduced with metformin therapy in HIV-infected patients with fat redistribution and insulin resistance. J. Clin. Endocrinol. Metab. 86:939–943.

    Article  PubMed  CAS  Google Scholar 

  13. Dubé, M.P., Edmondson-Melançon, H., Qian, D., Aqueel, R., Johnson, D.J., and Buchanan, T.A. (2001). Prospective evaluation of the effect of initiating indina vir-based therapy on insulin sensitity and B-cell function in HIV-infected patients. J. Acquir. Immune Defic. Syndr. 27:130–134.

    PubMed  Google Scholar 

  14. Noor, M.A., Lo, J.C., Mulligan, K., Schwarz, J.M., Halvorsen, R.A., Schambelan, M., et al. (2001). Metabolic effects of indinavir in healthy HIV-seronegative men. AIDS 15:F11-F18.

    Article  PubMed  CAS  Google Scholar 

  15. Walli, R., Herfort, O., Michl, G.M., Demant, T., Jager, H., Dieterle, C., et al. (1998). Treatment with protease inhibitors associated with peripheral insulin resistance and impaired oral glucose tolerance in HIV-1-infected patients. AIDS 12:F167–173.

    Article  PubMed  CAS  Google Scholar 

  16. Behrens, G., Dejam, A., Schmidt, H., Balks, H.J., Brabant, G., Korner, T., et al. (1999). Impaired glucose tolerance, beta cell function and lipid metabolism in HIV patients undertreament with protease inhibitors. AIDS 13:F63-F70.

    Article  PubMed  CAS  Google Scholar 

  17. Mynarcik, D.C., McNurlan, M.A., Steigbigel, R.T., Fuhrer, J., and Gelato, M.C. (2000). Association of severe insulin resistance with both loss of limb fat and elevated serum tumor necrosis factor receptor levels in HIV lipodystrophy. J. Acquir. Immune Defic. Syndr. 25:312–321.

    Article  PubMed  CAS  Google Scholar 

  18. Kosmiski, L.A., Kuritzkes, D.R., Lichtenstein, K.A., Glueck, D.H., Gourley, P.J., Stamm, E.R., et al. (2001). Fat distribution and metabolic changes are strongly correlated and energy expenditure is increased in the HIV lipodystrophy syndrome. AIDS 15:1993–2000.

    Article  PubMed  CAS  Google Scholar 

  19. Dubé, M.P., Qian, D., Edmondson-Melançon, H., Sattler, F.R., Goodwin, D., Martinez, C., et al. (2002). Prospective, 48-week, intensive metabolic study of amprenavir-based therapy. Clin. Infect. Dis. 35:475–481.

    Article  PubMed  Google Scholar 

  20. Bergman, R.N., Phillips, L.S., and Cobelli, C. (1981). Phyiologic evaluation of factors controlling glucose tolerance in man. J. Clin. Invest. 68:1456–1467.

    Article  PubMed  CAS  Google Scholar 

  21. Wolf, K., Tsakiris, D.A., Weber, R., Erb, P., and Battegay, M. (2002) Antiretroviral therapy reduces markers of endothelial and coagulation activation in patients infected with human immunodeficiency virus type 1. J. Infect. Dis. 185:456–462.

    Article  PubMed  CAS  Google Scholar 

  22. Joshi, V.V., Pawel, B., Connor, E., Sharer, L., Oleske, J.M., Morrison, S., et al. (1987). Arteriopathy in children with acquired immune deficiency syndrome. Pediatr. Pathol. 7:261–275.

    Article  PubMed  CAS  Google Scholar 

  23. Bussolino, F., Mitola, S., Serini, S., Barillari, G., and Ensoli B (2001). Interactions between endothelial cells and HIV-1. Int. J. Biochem. Cell Biol. 33:371–390.

    Article  PubMed  CAS  Google Scholar 

  24. Ren, Z., Yao, Q., and Chen, C. (2002). HIV-1 envelope glycoprotein 120 increases intercellular adhesion, molecule-1 expression by human endothelial cells. Lab. Invest. 82:245–255.

    PubMed  CAS  Google Scholar 

  25. Bozzette, S.A., Ake, C.F., Tam, H.K., Chang, S.W., and Louis, T.A. (2003). Cardiovascular and cerebrovascular events in patients treated for human immunodeficiency virus infection. N. Engl. J. Med. 348:702–710.

    Article  PubMed  CAS  Google Scholar 

  26. Mary-Krause, M., Cotte, L., Simon, A., Partisani, M., and Costagliola, D. (2003). Increased risk of myocardial infarction with duration of protease inhibitor therapy in HIV-infected men. AIDS 17:2479–2486.

    Article  PubMed  Google Scholar 

  27. Noor, M.A., Seneviratne, T., Aweeka, F.T., Lo, J.C., Schwarz, J., Mulligan, K., et al. (2002). Indinavir acutely inhibits insulin-stimulated glucose disposal in humans: a randomized, placebo-controlled study. AIDS 16:F1-F8.

    Article  PubMed  Google Scholar 

  28. Murata, H., Hruz, P.W., and Mueckler, M. (2002). Indinavir inhibits the glucose transporter isoform Glut4 at physiologic concentrations. AIDS 16:859–863.

    Article  PubMed  CAS  Google Scholar 

  29. Murata, H., Hruz, P.W., and Mueckler, M. (2000). The mechanism of insulin resistance caused by HIV protease inhibitor therapy. J. Biol. Chem. 275:20251–20254.

    Article  PubMed  CAS  Google Scholar 

  30. Dubé, M.P., Johnson, D.L., Currier, J.S., and Leedom, J.M. (1997). Protease inhibitor-associated hyperglycaemia. Lancet 350:713–714.

    Article  PubMed  Google Scholar 

  31. Schambelan, M., Benson, C.A., Carr, A., Currier, J.S., Dube, M.P., Gerber, J.G., et al. (2002). Management of metabolic complications associated with antiretroviral therapy for HIV-1 Infection: recommendations of an International AIDS Society-USA Panel. J. Acquir. Immune Defic. Syndr. 31:257–275.

    PubMed  Google Scholar 

  32. Sutinen, J., Korsheninnikova, E., Funahashi, T., Matsuzawa, Y., Nyman, T., and Yki-Jarvinen, H. (2003). Circulating concentration of adiponectin and its expression in subcutaneous adipose tissue in patients with highly active antiretroviral therapy-associated lipodystrophy. J. Clin. Endocrinol. Metab. 88:1907–1910.

    Article  PubMed  CAS  Google Scholar 

  33. Bastard, J.P., Caron, M., Vidal, H., Jan, V., Auclair, M., Vigouroux, C., et al. (2002). Association between altered expression of adipogenic factor SREBP1 in lipoatrophic adipose tissue from HIV-1-infected patients and abnormal adipocyte differentiation and insulin resitance. Lancet 359:1026–1031.

    Article  PubMed  CAS  Google Scholar 

  34. Johnson, J.A., Albu, J.B., Engelson, E.S., Fried, S.K., Inada, Y., Ionescu, G., et al. (2004). Increased systemic and adipose tissue cytokines in patients with HIV-associated lipodystrophy. Am. J. Physiol. Endocrinol. Metab. 286:E261-E271.

    Article  PubMed  CAS  Google Scholar 

  35. Cherry, C., Nolan, D., James, I., Mallal, S., McKinnon, E., French, M., et al. (2003). Longitudinal Associations Between Antiretroviral Treatments and Quantification of Tissue Mitochondrial DNA from Ambulatory Subjects with HIV Infection. 10th Conference on Retroviruses and Opportunistic Infections, Boston, Massachusetts, 2003, pp 133.

  36. Tong, Q., Sankal, A.J., Hadigan, C.M., Tan, G., Rosenberg, E.S., Kanki, P.J., et al. (2003). Regulation of adiponectin in human immunodeficiency virus-infected patients: relationship to body composition and metabolic indices. J. Clin. Endocrinol. Metab. 88:1559–1564.

    Article  PubMed  CAS  Google Scholar 

  37. Vigouroux, C., Maachi, M., Nguyen, T.H., Coussieu, C., Gharakhanian, S., Funahashi, T., et al. (2003). Serum adipocytokines are related to lipodystrophy and metabolic disorders in HIV-infected men under antiretroviral therapy. AIDS 17:1503–1511.

    Article  PubMed  CAS  Google Scholar 

  38. Mynarcik, D.C., Combs, T., McNurlan, M.A., Scherer, P.E., Komaroff, E., and Gelato, M.C. (2002). Adiponectin and leptin levels in HIV-infected subjects with insulin resistance and body fat redistribution. J. Acquir. Immune. Defic. Syndr. 31:514–520.

    PubMed  CAS  Google Scholar 

  39. Aukrust, P., Muller, F., Lien, E., Nordoy, I., Liabakk, N.B., Kvale, D., et al. (1999). Tumor necrosis factor (TNF) system levels in human immunodeficiency virus-infected patients during highly active antiretroviral therapy: Persistent TNF activation is associated with virologic and immunologic treatment failure. J. Infect. Dis. 179:74–82.

    Article  PubMed  CAS  Google Scholar 

  40. Eberhardt, W., Beck, K.F., and Pfeilschifter, J. (2002). Cytokine-induced expression of tPA is differentially modulated by NO and ROS in rat mesangial cells. Kidney Int. 61:20–30.

    Article  PubMed  CAS  Google Scholar 

  41. Moyle, G.J. and Back, D. (2001). Principles and practice of HIV-protease inhibitor pharmacoenhancement. HIV Medicine 2:105–113.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Dubé MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, E.M., Considine, R.V., Sattler, F.R. et al. Changes in thrombolytic and inflammatory markers after initiation of indinavir- or amprenavir-based antiretroviral therapy. Cardiovasc Toxicol 4, 179–186 (2004). https://doi.org/10.1385/CT:4:2:179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:4:2:179

Key Words

Navigation