Skip to main content
Log in

Transforming growth factor-β1 and disorders of the lung

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The transforming growth factor (TGF) superfamily encompasses about 30 members in mammals. The effect of TGF-β subfamily members is exerted and regulated via selective pathways of synthesis and signaling that involve activation of latent TGF-β, specific and high-affinity binding to cell membrane serine/threonine kinase receptors, activation of intracellular cascades that include Smad molecules and mitogen-activated protein kinases, and regulated termination of the effect by diverse mechanisms including protein degradation and transcriptional activation. Several comprehensive reviews on TGF-β biology in general and on the role of this cytokine in other diseases have been published recently. In recent years an unexpected role of TGF-β on lung homeostasis has been revealed. Here, we discuss the contribution of TGF-β to the pathogenesis of asthma and chronic obstructive pulmonary disease, two common illnesses of the lung, as well as of lymphangioleiomyomatosis, a rare disease in women. The information we collate and integrate places TGF-β at a pivotal point within complex networks that control lung physiology as well as the physiopathology of these lung diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Annes, J. P., Munger, J. S., and Rifkin, D. B. (2003) Making sense of latent TGF beta activation. J. Cell Sci. 116, 217–224.

    PubMed  CAS  Google Scholar 

  2. Attisano, L. and Wrana, J. L. (2002) Signal transduction by the TGF-beta superfamily. Science 296, 1646–1647.

    PubMed  CAS  Google Scholar 

  3. Benson, J. R. (2004) Role of transforming growth factor beta in breast carcinogenesis. Lancet Oncol. 5, 229–239.

    PubMed  CAS  Google Scholar 

  4. Marek, A., Brodzicki, J., Liberek, A., and Korzon, M. (2002) TGF-beta (transforming growth factor-beta) in chronic inflammatory conditions—a new diagnostic and prognostic marker? Med. Sci. Monit., 8, RA145-RA151.

    PubMed  CAS  Google Scholar 

  5. Derynck, R., Jarrett, J. A., Chen, E. Y., et al. (1985) Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature 316, 701–705.

    PubMed  CAS  Google Scholar 

  6. Martin, R., Haendler, B., Hofer-Warbinek, R., et al. (1987) Complementary DNA for human glioblastoma-derived T cell suppressor factor, a novel member of the transforming growth factor-beta gene family. EMBO J. 6, 3673–3677.

    PubMed  Google Scholar 

  7. ten Dijke, P., Geurts van Kessel, A. H., Foulkes, J. G., and Le Beau, M. M. (1988) Transforming growth factor type beta-3 maps to human chromosome 14, region q23–q24. Oncogene 3, 721–724.

    PubMed  Google Scholar 

  8. Kwong, K. Y., Literat, A., Zhu, N. L., et al. (2004) Expression of transforming growth factor beta (TGF-beta1) in human epithelial alveolar cells: a pro-inflammatory mediator independent pathway. Life Sci. 74, 2941–2957.

    PubMed  CAS  Google Scholar 

  9. Koli, K., Saharinen, J., Hyytiainen, M., Penttinen, C., and Keski-Oja, J. (2001) Latency, activation, and binding proteins of TGF-beta. Microsc. Res. Tech. 52, 354–362.

    PubMed  CAS  Google Scholar 

  10. Munger, J. S., Huang, X., Kawakatsu, H., et al. (1999) The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328.

    PubMed  CAS  Google Scholar 

  11. Goumans, M. J. and Mummery, C. (2000) Functional analysis of the TGF beta receptor/Smad pathway through gene ablation in mice. Int. J. Dev. Biol. 44, 253–265.

    PubMed  CAS  Google Scholar 

  12. Kaartinen, V., Voncken, J. W., Shuler, C., et al. (1995) Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat. Genet. 11, 415–421.

    PubMed  CAS  Google Scholar 

  13. Franzen, P., ten Dijke, P., Ichijo, H., et al. (1993) Cloning of a TGF beta type I receptor that forms a heteromeric complex with the TGF beta type II receptor. Cell 75, 681–692.

    PubMed  CAS  Google Scholar 

  14. Zhao, Y., Young, S. L., McIntosh, J. C., Steele, M. P., and Silbajoris, R. (2000) Ontogeny and localization of TGF-beta type I receptor expression during lung development. Am. J. Physiol. Lung Cell. Mol. Physiol. 278, L1231-L1239.

    PubMed  CAS  Google Scholar 

  15. Bottinger, E. P., Jakubczak, J. L., Haines, D. C., Bagnall, K., and Wakefield, L. M. (1997) Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor β receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7,12-dimethylbene-α-anthracene. Cancer Res. 57, 5564–5570.

    PubMed  CAS  Google Scholar 

  16. Larsson, J., Goumans, M. J., Sjostrand, L. J., et al. (2001) Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice. EMBO J. 20, 1663–1673.

    PubMed  CAS  Google Scholar 

  17. Oshima, M., Oshima, H., and Taketo, M. M. (1996) TGF β receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev. Biol. 179, 297–302.

    PubMed  CAS  Google Scholar 

  18. Datto, M. and Wang, X. F. (2000) The Smads: transcriptional regulation and mouse models. Cytokine Growth Factor Rev. 11, 37–48.

    PubMed  CAS  Google Scholar 

  19. Sirard, C., Kim, S., Mirtsos, C., et al. (2000) Targeted disruption in murine cells reveals variable requirement for Smad4 in transforming growth factor b-related signaling. J. Biol. Chem. 275, 2063–2070.

    PubMed  CAS  Google Scholar 

  20. Massague, J. (2000) How cells read TGF-β signals. Nat. Rev. Mol. Cell Biol. 1, 169–178.

    PubMed  CAS  Google Scholar 

  21. Kavsak, P., Rasmussen, R. K., Causing, C. G., et al. (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF-β receptor for degradation. Mol. Cell 6, 1365–1375.

    PubMed  CAS  Google Scholar 

  22. Koinuma, D., Shinozaki, M., Komuro, A. et al. (2003) Arkadia amplifies TGF-beta superfamily signalling through degradation of Smad7. EMBO J. 22, 6458–6470.

    PubMed  CAS  Google Scholar 

  23. Hanyu, A., Ishidou, Y., Ebisawa, T., Shimanuki, T., Imamura, T., and Miyazono, K. (2001) The N domain of Smad7 is essential for specific inhibition of transforming growth factor-β signaling. J. Cell Biol. 155, 1017–1027.

    PubMed  CAS  Google Scholar 

  24. Pulaski, L., Landstrom, M., Heldin, C. H., and Souchelnytskyi, S. (2001) Phosphorylation of Smad7 at Ser-249 does not interfere with its inhibitory role in transforming growth factor-β-dependent signaling but affects Smad7-dependent transcriptional activation. J. Biol. Chem. 276, 14,344–14,349.

    CAS  Google Scholar 

  25. Reguly, T. and Wrana, J. L. (2003) In or out? The dynamics of Smad nucleocytoplasmic shuttling. Trends Cell Biol. 13, 216–220.

    PubMed  CAS  Google Scholar 

  26. Funaba, M., Zimmerman, C. M., and Mathews, L. S. (2002) Modulation of Smad2-mediated signaling by extracellular signal-regulated kinase. J. Biol. Chem. 277, 41,361–41,368.

    CAS  Google Scholar 

  27. Engel, M. E., McDonnell, M. A., Law, B. K., and Moses, H. L. (1999) Interdependent SMAD and JNK signaling in transforming growth factor β-mediated transcription. J. Biol. Chem. 274, 37,413–37,420.

    CAS  Google Scholar 

  28. Wicks, S. J., Lui, S., Abdel-Wahab, N., Mason, R. M., and Chantry, A. (2000) Inactivation of smad-transforming growth factor β signaling by Ca2+-calmodulin-dependent protein kinase II. Mol. Cell. Biol. 20, 8103–8111.

    PubMed  CAS  Google Scholar 

  29. Yakymovych, I., ten Dijke, P., Heldin, C. H., and Souchelnytskyi, S. (2001) Regulation of Smad signaling by protein kinase C. FASEB J. 15, 553–555.

    PubMed  CAS  Google Scholar 

  30. Birchenall-Roberts, M. C., Fu, T., Bang, O. S., et al. (2004) Tuberous sclerosis complex 2 gene product interacts with human SMAD proteins: a molecular link of two tumor suppressor pathways. J. Biol. Chem. 279, 25,605–25,613.

    CAS  Google Scholar 

  31. Zavadil, J., Bitzer, M., Liang, D., et al. (2001) Genetic programs of epithelial cell plasticity directed by transforming growth factor-β. PNAS 98, 6686–6691.

    PubMed  CAS  Google Scholar 

  32. Brown, K. and Bhowmick, N. A. (2004) Linking TGF-beta-mediated Cdc25A inhibition and cytoskeletal regulation through RhoA/p160(ROCK) signaling. Cell Cycle 3, 408–410.

    PubMed  CAS  Google Scholar 

  33. Vinals, F. and Pouyssegur, J. (2001) Transforming growth factor β1 (TGF-β1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-α signaling. Mol. Cell. Biol. 21, 7218–7230.

    PubMed  CAS  Google Scholar 

  34. Griswold-Prenner, I., Kamibayashi, C., Maruoka, E. M., Mumby, M. C., and Derynck, R. (1998) Physical and functional interactions between type I transforming growth factor β receptors and Bα, a WD-40 repeat subunit of phosphatase 2A. Mol. Cell. Biol. 18, 6595–6604.

    PubMed  CAS  Google Scholar 

  35. Frederick, J. P. and Wang, X. F. (2002) Smads “freeze” when they ski. Structure (Camb.) 10, 1607–1611.

    CAS  Google Scholar 

  36. Barbato, A., Turato, G., Baraldo, S., et al. (2003) Airway inflammation in childhood asthma. Am. J. Respir. Crit. Care Med. 168, 798–803.

    PubMed  Google Scholar 

  37. Knight, D. (2001) Epithelium-fibroblast interactions in response to airway inflammation. Immunol. Cell. Biol. 79, 160–164.

    PubMed  CAS  Google Scholar 

  38. Verrecchia, F., Chu, M. L., and Mauviel, A. (2001) Identification of novel TGF-beta/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J. Biol. Chem. 276, 17,058–17,062.

    CAS  Google Scholar 

  39. McKarns, S. C., Letterio, J. J., and Kaminski, N. E. (2003) Concentration-dependent bifunctional effect of TGF-beta 1 on immunoglobulin production: a role for Smad3 in IgA production in vitro. Int. Immunopharmacol. 3, 1761–1774.

    PubMed  CAS  Google Scholar 

  40. Pepper, M. S., Vassalli, J. D., Orci, L., and Montesano, R. (1993) Biphasic effect of transforming growth factor-beta 1 on in vitro angiogenesis. Exp. Cell. Res. 204, 356–363.

    PubMed  CAS  Google Scholar 

  41. Dunker, N. and Krieglstein, K. (2000) Targeted mutations of transforming growth factor-beta genes reveal important roles in mouse development and adult homeostasis. Eur. J. Biochem. 267, 6982–6988.

    PubMed  CAS  Google Scholar 

  42. Zhou, L., Dey, C. R., Wert, S. E., and Whitsett, J. A. (1996) Arrested lung morphogenesis in transgenic mice bearing an SP-C-TGF-beta 1 chimeric gene. Dev. Biol. 175, 227–238.

    PubMed  CAS  Google Scholar 

  43. Zhao, J., Crowe, D. L., Castillo, C., Wuenschell, C., Chai, Y., and Warburton, D. (2000) Smad7 is a TGF-beta-inducible attenuator of Smad2/3-mediated inhibition of embryonic lung morphogenesis. Mech. Dev. 93, 71–81.

    PubMed  CAS  Google Scholar 

  44. Luukko, K., Ylikorkala, A., and Makela, T. P. (2001) Developmentally regulated expression of Smad3, Smad4, Smad6, and Smad7 involved in TGF-beta signaling. Mech. Dev. 101, 209–212.

    PubMed  CAS  Google Scholar 

  45. Sirard, C., de la Pompa J. L., Elia, A., et al. (1998) The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev. 12, 107–119.

    PubMed  CAS  Google Scholar 

  46. Yang, X., Letterio, J. J., Lechleider, R. J., et al. (1999) Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF β. EMBO J. 18, 1280–1291.

    PubMed  CAS  Google Scholar 

  47. Duvernelle, C., Freund, V., and Frossard, N. (2003) Transforming growth factor-beta and its role in asthma. Pulm. Pharmacol. Ther. 16, 181–196.

    PubMed  CAS  Google Scholar 

  48. Bartram, U. and Speer, C. P. (2004) The role of transforming growth factor beta in lung development and disease. Chest 125, 754–765.

    PubMed  Google Scholar 

  49. Wojnarowski, C., Frischer, T., Hofbauer, E., et al. (1999) Cytokine expression in bronchial biopsies of cystic fibrosis patients with and without acute exacerbation. Eur. Respir. J. 14, 1136–1144.

    PubMed  CAS  Google Scholar 

  50. Kokturk, N., Tatlicioglu, T., Memis, L., Akyurek, N., and Akyol, G. (2003) Expression of transforming growth factor beta1 in bronchial biopsies in asthma and COPD. J. Asthma 40, 887–893.

    PubMed  CAS  Google Scholar 

  51. Cohn, L., Elias, J. A., and Chupp, G. L. (2004) Asthma: mechanisms of disease persistence and progression. Annu. Rev. Immunol. 22, 789–815.

    PubMed  CAS  Google Scholar 

  52. Ndukwu, I. M., Naureckas, E. T., Maxwell, C., Waldman, M., and Leff, A. R. (1999) Relationship of cellular transmigration and airway response after allergen challenge. Am. J. Respir. Crit. Care Med. 160, 1516–1524.

    PubMed  CAS  Google Scholar 

  53. Hara, K., Hasegawa, T., Ooi, H., et al. (2001) Inhibitory role of eosinophils on cell surface plasmin generation by bronchial epithelial cells: inhibitory effects of transforming growth factor beta. Lung 179, 9–20.

    PubMed  CAS  Google Scholar 

  54. Cho, J. Y., Miller, M., Baek, K. J., et al. (2004) Inhibition of airway remodeling in IL-5-deficient mice. J. Clin. Invest. 113, 551–560.

    PubMed  CAS  Google Scholar 

  55. Isenberg-Feig, H., Justice, J. P., and Keane-Myers, A. (2003) Animal models of allergic asthma. Curr. Allergy Asthma Rep. 3, 70–78.

    PubMed  Google Scholar 

  56. Zemann, B., Schwaerzler, C., Griot-Wenk, M., et al. (2003) Oral administration of specific antigens to allergy-prone infant dogs induces IL-10 and TGF-beta expression and prevents allergy in adult life. J. Allergy Clin. Immunol. 111, 1069–1075.

    PubMed  CAS  Google Scholar 

  57. Schramm, C., Herz, U., Podlech, J., et al. (2003) TGF-beta regulates airway responses via T cells. J. Immunol. 170, 1313–1319.

    PubMed  CAS  Google Scholar 

  58. Kumar, R. K., Herbert, C., Thomas, P. S., et al. (2003) Inhibition of inflammation and remodeling by roflumilast and dexamethasone in murine chronic asthma. J. Pharmacol. Exp. Ther. 307, 349–355.

    PubMed  CAS  Google Scholar 

  59. Jain, V. V., Kitagaki, K., Businga, T., et al. (2002) CpG-oligodeoxynucleotides inhibit airway remodeling in a murine model of chronic asthma. J. Allergy Clin. Immunol. 110, 867–872

    PubMed  CAS  Google Scholar 

  60. Silverman, E. S., Palmer, L. J., Subramaniam, V., et al. (2004) Transforming growth factor-beta1 promoter polymorphism C-509T is associated with asthma. Am. J. Respir. Crit. Care Med. 169, 214–219.

    PubMed  Google Scholar 

  61. Paraskakis, E., Sourvinos, G., Passam, F., et al. (2003) Microsatellite DNA instability and loss of heterozygosity in bronchial asthma. Eur. Respir. J. 22, 951–955.

    PubMed  CAS  Google Scholar 

  62. Yuyama, N., Davies, D. E., Akaiwa, M., et al. (2002) Analysis of novel disease-related genes in bronchial asthma. Cytokine 19, 287–296.

    PubMed  CAS  Google Scholar 

  63. Zou, J., Young, S., Zhu, F., et al. (2002) Microarray profile of differentially expressed genes in a monkey model of allergic asthma. Genome Biol., 3, research0020.

  64. Takizawa, H., Tanaka, M., Takami, K., et al. (2001) Increased expression of transforming growth factor-beta1 in small airway epithelium from tobacco smokers and patients with chronic obstructive pulmonary disease (COPD). Am. J. Respir. Crit. Care Med. 163, 1476–1483.

    PubMed  CAS  Google Scholar 

  65. Hodge, S., Hodge, G., Holmes, M., Flower, R., and Scicchitano, R. (2001) Interleukin-4 and tumour necrosis factor-alpha inhibit transforming growth factor-beta, production in a human bronchial epithelial cell line: possible relevance to inflammatory mechanisms in chronic obstructive pulmonary disease. Respirology 6, 205–211.

    PubMed  CAS  Google Scholar 

  66. Luethviksson, B. R. and Gunnlaugsdottir, B. (2003) Transforming growth factor-beta as a regulator of site-specific T-cell inflammatory response. Scand. J. Immunol. 58, 129–138.

    PubMed  CAS  Google Scholar 

  67. Hodge, S. J., Hodge, G. L., Reynolds, P. N., Scicchitano, R., and Holmes, M. (2003) Increased production of TGF-beta and apoptosis of T lymphocytes isolated from peripheral blood in COPD. Am. J. Physiol. Lung Cell Mol. Physiol. 285, L492-L499.

    PubMed  CAS  Google Scholar 

  68. Silverman, E. K., Speizer, F. E., Weiss, S. T., et al. (2000) Familial aggregation of severe, earlyonset COPD: candidate gene approaches. Chest 117, 273S-274S.

    PubMed  Google Scholar 

  69. Wu, L., Chau, J., Young, R. P., et al. (2004) Transforming growth factor-beta1 genotype and susceptibility to chronic obstructive pulmonary disease. Thorax 59, 126–129.

    PubMed  CAS  Google Scholar 

  70. Li, H., Cui, D., Ma, N., et al. (2002) The effect of extracellular matrix remodeling on airflow obstruction in a rat model of chronic obstructive pulmonary disease. Zhonghua Jie He He Hu Xi Za Zhi 25, 403–407.

    PubMed  Google Scholar 

  71. Morris, D. G., Huang, X., Kaminski, N., et al. (2003) Loss of integrin alpha(v)beta6-mediated TGF-beta activation causes Mmp12-dependent emphysema. Nature 422, 169–173.

    PubMed  CAS  Google Scholar 

  72. Pittet, J. F., Griffiths, M. J., Geiser, T., et al. (2001) TGF-beta is a critical mediator of acute lung injury. J. Clin. Invest. 107, 1537–1544.

    PubMed  CAS  Google Scholar 

  73. Neptune, E. R., Frischmeyer, P. A., Arking, D. E., et al. (2003) Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 33, 407–411.

    PubMed  CAS  Google Scholar 

  74. Stemer-Kock, A., Thorey, I. S., Koli, K., et al. (2002) Disruption of the gene encoding the latent transforming growth factor-beta binding protein 4 (LTBP-4) causes abnormal lung development, cardiomyopathy, and colorectal cancer. Genes Dev. 16, 2264–2273.

    Google Scholar 

  75. Zheng, T., Zhu, Z., Wang, Z., et al. (2000) Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J. Clin. Invest. 106, 1081–1093.

    PubMed  CAS  Google Scholar 

  76. Lee, C. G., Homer, R. J., Zhu, Z., et al. (2001) Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J. Exp. Med. 194, 809–821.

    PubMed  CAS  Google Scholar 

  77. Yanagisawa, J., Yanagi, Y., Masuhiro, Y., et al. (1999) Convergence of transforming growth factor-beta and vitamin D signaling pathways on SMAD transcriptional coactivators. Science 283, 1317–1321.

    PubMed  CAS  Google Scholar 

  78. Massaro, G. D. and Massaro, D. (1997) Retinoic acid treatment abrogates elastase-induced pulmonary emphysema in rats. Nat. Med. 3, 675–677.

    PubMed  CAS  Google Scholar 

  79. Fujita, M., Ye, Q., Ouchi, H., et al. (2004) Retinoic acid fails to reverse emphysema in adult mouse models. Thorax 59, 224–230.

    PubMed  CAS  Google Scholar 

  80. Wang, H., Liu, X., Umino, T., et al. (2001) Cigarette smoke inhibits human bronchial epithelial cell repair processes. Am. J. Respir. Cell. Mol. Biol. 25, 772–779.

    PubMed  CAS  Google Scholar 

  81. Ogawa, E., Elliott, W. M., Hughes, F., Eichholtz, T. J., Hogg, J. C., and Hayashi, S. (2004) Latent adenoviral infection induces production of growth factors relevant to airway remodeling in COPD. Am. J. Physiol. Lung Cell Mol. Physiol. 286, L189-L197.

    PubMed  CAS  Google Scholar 

  82. Solway, J., Forsythe, S. M., Halayko, A. J., Vieira, J. E., Hershenson, M. B., and Camoretti-Mercado, B. (1998) Transcriptional regulation of smooth muscle contractile apparatus expression. Am. J. Respir. Crit. Care Med. 158, S100-S108.

    PubMed  CAS  Google Scholar 

  83. Camoretti-Mercado, B., Liu, H. W., Halayko, A. J., et al. (2000) Physiological control of smooth muscle-specific gene expression through regulated nuclear translocation of serum response factor. J. Biol. Chem. 275, 30,387–30,393.

    Article  CAS  Google Scholar 

  84. Parmacek, M. S. (2001) Transcriptional programs regulating vascular smooth muscle cell development and differentiation. Curr. Top. Dev. Biol. 51, 69–89.

    Article  PubMed  CAS  Google Scholar 

  85. Kumar, M. S. and Owens, G. K. (2003) Combinatorial control of smooth muscle-specific gene expression. Arterioscl. Thromb. Vasc. Biol. 23, 737–747.

    PubMed  CAS  Google Scholar 

  86. Camoretti-Mercado, B., Dulin, N. O., and Solway, J. (2003) Serum response factor function and dysfunction in smooth muscle. Respir. Physiol. Neurobiol. 137, 223–235.

    PubMed  CAS  Google Scholar 

  87. Zhe, X., Yang, Y., Jakkaraju, S., and Schuger, L. (2003) Tissue inhibitor of metalloproteinase-3 downregulation in lymphangioleiomyomatosis: potential consequence of abnormal serum response factor expression. Am. J. Respir. Cell. Mol. Biol. 28, 504–511.

    PubMed  CAS  Google Scholar 

  88. Qiu, P., Feng, X. H., and Li, L. (2003) Interaction of Smad3 and SRF-associated complex mediates TGF-beta1 signals to regulate SM22 transcription during myofibroblast differentiation. J. Mol. Cell. Cardiol. 35, 1407–1420.

    PubMed  CAS  Google Scholar 

  89. Evans, S. E., Colby, T. V., Ryu, J. H., and Limper, A. H. (2004) Transforming growth factor-beta 1 and extracellular matrix-associated fibronectin expression in pulmonary lymphangioleiomyo-matosis. Chest 125, 1063–1070.

    PubMed  CAS  Google Scholar 

  90. Matsui, K., Takeda, K., Yu, Z. X., Travis, W. D., Moss, J., and Ferrans, V. J. (2000) Role for activation of matrix metalloproteinases in the pathogenesis of pulmonary lymphangioleiomyomatosis. Arch. Pathol. Lab. Med. 124, 267–275.

    PubMed  CAS  Google Scholar 

  91. Yu, Q. and Stamenkovic, I. (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 14, 163–176.

    PubMed  Google Scholar 

  92. Carsillo, T., Astrinidis, A., and Henske, E. P. (2000) Mutations in the tuberous sclerosis complex gene TSC2 are a cause of sporadic pulmonary lymphangioleiomyomatosis. PNAS 97, 6085–6090.

    PubMed  CAS  Google Scholar 

  93. Roberts, A. B. and Wakefield, L. M. (2003) The two faces of transforming growth factor β in carcinogenesis. PNAS 100, 8621–8623.

    PubMed  CAS  Google Scholar 

  94. Karbowniczek, M., Astrinidis, A., Balsara, B. R., et al. (2003) Recurrent lymphangiomyomatosis after transplantation: genetic analyses reveal a metastatic mechanism. Am. J. Respir. Crit. Care Med. 167, 976–982.

    PubMed  Google Scholar 

  95. Yang, Y. A., Dukhanina, O., Tang, B., et al. (2002) Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J. Clin. Invest. 109, 1607–1615.

    PubMed  CAS  Google Scholar 

  96. Muraoka, R. S., Dumont, N., Ritter, C. A., et al. (2002) Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J. Clin. Invest. 109, 1551–1559.

    PubMed  CAS  Google Scholar 

  97. Lee, B. S. and Nowak, R. A. (2001) Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-beta-3 (TGF-beta-3) and altered responses to the antiproliferative effects of TGF-beta. J. Clin. Endocrinol. Metab. 86, 913–920.

    PubMed  CAS  Google Scholar 

  98. Kobayashi, T., Minowa, O., Sugitani, Y., et al. (2001) A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar but not identical to those caused by Tsc2 mutation in mice. PNAS 98, 8762–8767.

    PubMed  CAS  Google Scholar 

  99. Onda, H., Lueck, A., Marks, P. W., Warren, H. B., and Kwiatkowski, D. J. (1999) Tsc2(+/−) mice develop tumors in multiple sites that express gelsolin and are influenced by genetic background. J. Clin. Invest. 104, 687–695.

    Article  PubMed  CAS  Google Scholar 

  100. Churchill, J., Cheng, B., Ma, L., et al. (2003) Immunohistochemical characterization of lymphangioleio-myomatosis (LAM) derived smooth muscle cells (SMC) [abstract]. Am. J. Respir. Crit. Care Med. 167, A330.

    Google Scholar 

  101. Chen, W., Jin, W., Hardegen, N., et al. (2003) Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp 3. J. Exp. Med. 198, 1875–1886.

    PubMed  CAS  Google Scholar 

  102. Zuany-Amorim, C., Sawicka, E., Manlius, C., et al. (2002) Suppression of airway eosinophilia by killed Mycobacterium vaccae-induced allergen-specific regulatory T-cells. Nat. Med. 8, 625–629.

    PubMed  CAS  Google Scholar 

  103. Wen, F. Q., Kohyama, T., Skold, C. M., et al. (2003) Glucocorticoids modulate TGF-beta production by human fetal lung fibroblasts. Inflammation 27, 9–19.

    PubMed  CAS  Google Scholar 

  104. Chakir, J., Shannon, J., Molet, S., et al. (2003) Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-beta, IL-11, IL-17, and type I and type III collagen expression. J. Allergy Clin. Immunol. 111, 1293–1298.

    PubMed  CAS  Google Scholar 

  105. Arutiunov, G. P., Korsunskaia, M. I., Cherniavskaia, T. K., Vershinin, A. A., Rozanov, A. V., and Balanina, N. O. (2000) Safety and clinical efficiency of long-term complete blockade of renin-angiotensin-aldosterone system in patients with chronic obstructive pulmonary diseases. Ter. Arkh. 72, 52–56.

    PubMed  CAS  Google Scholar 

  106. Li, X., Rayford, H., and Uhal, B. D. (2003) Essential roles for angiotensin receptor AT1a in bleomycin-induced apoptosis and lung fibrosis in mice. Am. J. Pathol. 163, 2523–2530.

    PubMed  CAS  Google Scholar 

  107. Myou, S., Fujimura, M., Kamio, Y., et al. (2000) Effect of losartan, a type 1 angiotensin II receptor antagonist, on bronchial hyperresponsiveness to methacholine in patients with bronchial asthma. Am. J. Respir. Crit. Care Med. 162, 40–44.

    PubMed  CAS  Google Scholar 

  108. el-Agroudy, A. E., Hassan, N. A., Foda, M. A., et al. (2003) Effect of angiotensin II receptor blocker on plasma levels of TGF-beta 1 and interstitial fibrosis in hypertensive kidney transplant patients. Am. J. Nephrol. 23, 300–306.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanca Camoretti-Mercado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camoretti-Mercado, B., Solway, J. Transforming growth factor-β1 and disorders of the lung. Cell Biochem Biophys 43, 131–148 (2005). https://doi.org/10.1385/CBB:43:1:131

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:43:1:131

Index Entries

Navigation