Skip to main content
Log in

Weak lignin-binding enzymes

A novel approach to improve activity of cellulases for hydrolysis of lignocellulosics

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Economic barriers preventing commercialization of lignocellulose-to-ethanol bioconversion processes include the high cost of hydrolytic enzymes. One strategy for cost reduction is to improve the specific activities of cellulases by genetic engineering. However, screening for improved activity typically uses “ideal” cellulosic substrates, and results are not necessarily applicable to more realistic substrates such as pretreated hardwoods and softwoods. For lignocellulosic substrates, nonproductive binding and inactivation of enzymes by the lignin component appear to be important factors limiting catalytic efficiency. A better understanding of these factors could allow engineering of cellulases with improved activity based on reduced enzyme-lignin interaction (“weak lignin-binding cellulases”). To prove this concept, we have shown that naturally occurring cellulases with similar catalytic activity on a model cellulosic substrate can differ significantly in their affinities for lignin. Moreover, although cellulose-binding domains (CBDs) are hydrophobic and probably participate in lignin binding, we show that cellulases lacking CBDs also have a high affinity for lignin, indicating the presence of lignin-binding sites on the catalytic domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vinzant, T. B., Ehrman, C. I., Adney, W. S., Thomas, S. R., and Himmel, M. E. (1997), Appl. Biochem. Biotechnol. 62, 94–101.

    Google Scholar 

  2. Pinto, J.-H. and Kamden, D. P. (1996), Appl. Biochem. Biotechnol. 60, 289–297.

    Google Scholar 

  3. Kong, F., Engler, C. R., and Soltes, E. J. (1992), appl. Biochem. Biotechnol. 34–35, 23–25.

    Article  Google Scholar 

  4. Chang, V. S. and Holtzapple, M. T. (2000), Appl. Biochem. Biotechnol. 84–86, 5–37.

    Article  Google Scholar 

  5. Yuldashev, B. T., Rabinovich, M. L., and Rakhimov, M. M. (1993), Prikl. Biokhim. Mikrobiol. 29, 233–243 (in Russian).

    CAS  Google Scholar 

  6. Mooney, C. A., Mansfield, S. D., Touhy, M. G., and Saddler, J. N. (1998), Biores. Technol. 64, 113–119.

    Article  CAS  Google Scholar 

  7. Ooshima, H., Sakata, M., and Harano, Y. (1986), Biotechnol Bioeng. 28, 1727–1734.

    Article  CAS  Google Scholar 

  8. Park, J. W., Takahata, Y., and Kajiuchi, T. (1992), Biotechnol Bioeng. 49, 117–120.

    Article  Google Scholar 

  9. Helle, S. S., Duff, S. J. B. and Cooper, D. G. (1993), Biotechnol Bioeng. 42, 611–617.

    Article  CAS  Google Scholar 

  10. Eriksson, T., Borjesson, J., and Tjerneld, F. (2002), Enzyme Microb. Technol. 31, 353–364.

    Article  CAS  Google Scholar 

  11. Tengborg, C., Galbe, M., and Zacchi, G. (2001), Enzyme Microb. Technol. 28, 835–844.

    Article  CAS  Google Scholar 

  12. Sewalt, V. J. H., Glasser, W. G., and Beauchemin, K. A. (1997), J. Agric. Food Chem. 45, 1823–1828.

    Article  CAS  Google Scholar 

  13. Genencor International Inc., NREL/DOE Subcontract with Genencor for “Cellulase Cost Reduction for Bioethanol”, Enzyme sugar platform and advanced pretreatment interim stage reviews (2003).

  14. Wolfenden, R., Lu, X., and Young, G. (1998), J. Am. Chem. Soc. 120, 6814–6815.

    Article  CAS  Google Scholar 

  15. Bradford, M. (1976), Anal. Biochem. 72, 248–254.

    Article  CAS  Google Scholar 

  16. Ghose, T. K. (1987), Pure Appl. Chem. 59, 257–268.

    CAS  Google Scholar 

  17. Eriksson, T., Karlsson, J., and Tjerneld, F. A. (2002), Appl. Biochem. Biotechnol. 101, 41–59.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Berlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berlin, A., Gilkes, N., Kurabi, A. et al. Weak lignin-binding enzymes. Appl Biochem Biotechnol 121, 163–170 (2005). https://doi.org/10.1385/ABAB:121:1-3:0163

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:121:1-3:0163

Index Entries

Navigation