Skip to main content

Freeze-Fracture Studies of Cerebral Endothelial Tight Junctions

  • Protocol
The Blood-Brain Barrier

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 89))

Abstract

The tracer experiments of Reese and Karnovsky (1) demonstrated that it was the endothelium that formed a permeability barrier because electron-dense tracers such as horseradish peroxidase did not pass from the vessel lumen through the interendothelial cleft. The structure responsible for the lack of permeability of tracers was the tight junction. In endothelial cells, these specialized contact zones were already known from ultrastructural studies (2), and in epithelial cells, their morphology was described in detail by Farquhar and Palade (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reese, T. S., and Karnovsky, M. J. (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol. 34, 207–217.

    Article  PubMed  CAS  Google Scholar 

  2. Muir, A. R., and Peters, A. (1962) Quintuple-layered membrane junctions at therminal bars between endothelial cells. J. Cell Biol. 12, 443–448.

    Article  PubMed  CAS  Google Scholar 

  3. Farquhar, M. G., and Palade, G. E. (1963) Junctional complexes in various epithelia. J. Cell Biol. 17, 375–412.

    Article  PubMed  CAS  Google Scholar 

  4. Singer, S. J., and Nicolson, G. L. (1972) The fluid mosaic model of the structure of cell membranes. Science 175, 720–731.

    Article  PubMed  CAS  Google Scholar 

  5. Staehelin, L. A., Mukherjee, T. M., and Williams, A. W. (1969) Freeze-etch appearance of the tight junctions in the epithelium of small and large intestine of mice. Protoplasma 67, 165–187.

    Article  PubMed  CAS  Google Scholar 

  6. Staehelin, L. A. (1973) Further observations on the fine structure of freeze-cleaved tight junctions. J. Cell Sci. 13, 763–786.

    PubMed  CAS  Google Scholar 

  7. Staehelin, L. A. (1974) Structure and function of intercellular junctions. Int. Rev. Cytol. 39, 191–283.

    Article  PubMed  CAS  Google Scholar 

  8. McNutt, N. S., and Weinstein, R. S. (1973) Membrane ultrastructure at mammalian intercellular junctions. Progr. Biophys. Mol. Biol. 26, 45–102.

    Article  CAS  Google Scholar 

  9. Dermietzel, R. (1975) Junctions in the central nervous system of the cat. IV. Interendothelial junctions of cerebral blood vessels from selected areas of the brain. Cell Tissue Res. 164, 45–62.

    PubMed  CAS  Google Scholar 

  10. Mollgard, K., and Saunders, N. R. (1975) Complex tight junctions of epithelial and endothelial cells in early foetal brain. J. Neurocytol. 4, 453–468.

    Article  Google Scholar 

  11. Tani, E., Yamagata, S., and Ito, Y. (1977) Freeze-fracture of capillary endothelium in rat brain. Cell Tissue Res. 176, 157–165.

    Article  PubMed  CAS  Google Scholar 

  12. Shivers, R. R. (1979) The blood-brain barrier of a reptile, Anolis carolinensis. A freeze-fracture study. Brain Res. 169, 221–230.

    Article  PubMed  CAS  Google Scholar 

  13. Moor, H., and Mühlethaler, K. (1963) Fine structure of frozen etched yeast cells. J. Cell Biol. 17, 609–628.

    Article  PubMed  CAS  Google Scholar 

  14. Branton, D. (1966) Fracture faces of frozen membranes. Proc. Natl. Acad. Sci. USA 55, 1048–1051.

    Article  PubMed  CAS  Google Scholar 

  15. Pinto da Silva, P., and Branton, D. (1970) Membrane splitting in freeze-etching: covalently bound ferritin as a membrane marker. J. Cell Biol. 45, 598–605.

    Google Scholar 

  16. Branton, D., Bullivant, S., Gilula, N. B., et al. (1975) Freeze-etching nomeclature. Science 190, 54–56.

    Article  PubMed  CAS  Google Scholar 

  17. Deamer, D. (1998) Daniel Branton and freeze-fracture analysis of membranes. Trends Cell Biol. 8, 460–462.

    Article  PubMed  CAS  Google Scholar 

  18. Menco, B. P. M. (1986) A survey of ultra-rapid cryofixation methods with particular emphasis on applications to freeze-fracturing, freeze-etching, and freeze-substitution. J. Electr. Micros. Techn. 4, 177–240.

    Article  Google Scholar 

  19. Glauert, A. M., ed. (1985), Practical Methods in Electron Microscopy. Elsevier, Amsterdam, New York, Oxford.

    Google Scholar 

  20. Wendt-Gallitelli, M-F, and Wolburg, H. (1984) Rapid freezing, cryosectioning, and X-ray microanalysis on cardiac muscle preparations in defined functional states. J. Electr. Micros. Techn. 1, 151–174.

    Article  CAS  Google Scholar 

  21. Dahl, R., and Staehelin, L. A. (1989) High-pressure freezing for the preservation of biological structure: theory and practice. J. Electr. Micros. Techn. 13, 165–174.

    Article  CAS  Google Scholar 

  22. Pinto da Silva, P., and Kan, F. W. (1984) Label-fracture: a method for high resolution labeling of cell surfaces. J. Cell Biol. 99, 1156–1161.

    Google Scholar 

  23. Andersson-Forsman, C., and Pinto da Silva, P. (1988) Fracture-flip: new high resolution images of cell surfaces after carbon stabilization of freeze-fractured membranes. J. Cell Sci. 90, 531–541.

    Google Scholar 

  24. Fujimoto, K. (1995) Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. J. Cell Sci. 108, 3443–3449.

    PubMed  CAS  Google Scholar 

  25. Fujimoto, K. (1997) SDS-digested freeze-fracture replica labeling electron microscopy to study the two-dimensional distribution of integral membrane proteins and phospholipids in biomembranes: practical procedure, interpretation and application. Histochem. Cell Biol. 107, 87–96.

    Article  PubMed  CAS  Google Scholar 

  26. Heuser, J. E., Reese, T. S., Jan, L. Y., Dennis, M. J., and Evans, L. (1979) Synaptic vesicle exocytosis captured by quick-freezing and correlated with quantal transmitter release. J. Cell Biol. 81, 275–300.

    Article  PubMed  CAS  Google Scholar 

  27. Fujimoto, K., Noda, T., and Fujimoto, T. (1997) A simple and reliable quick-freezing (freeze-fracturing procedure. Histochem. Cell Biol. 107, 81–84.

    Article  PubMed  CAS  Google Scholar 

  28. Quick, D. C, and Letourneau, P. C. (1988) Immuno-labeling for freeze-fracture: application to a cell surface attachment antigen. Brain Res. 440, 243–251.

    Article  PubMed  CAS  Google Scholar 

  29. McGuire, P. G., and Twietmeyer, T. A. (1984) Intramembrane particle distribution and junction morphology in rapidly frozen aortic endothelial cells. Microcirc. Endoth. Lymphatics 1, 705–726.

    CAS  Google Scholar 

  30. Mühleisen, H., Wolburg, H., and Betz, E. (1989) Freeze-fracture analysis of endothelial cell membranes in rabbit carotid arteries subjected to short-term atherogenic stimuli. Virch. Arch. B Cell Pathol. 56, 413–417.

    Article  Google Scholar 

  31. Wolburg, H., and Rohlmann, A. (1995) Structure-function relationships in gap junctions. Int. Rev. Cytol. 157, 315–373.

    Article  PubMed  CAS  Google Scholar 

  32. Wolburg, H. (1995) Orthogonal arays of intramembranous particles. A review with special reference to astrocytes. Brain Res. 36, 239–258.

    CAS  Google Scholar 

  33. Wolburg, H., and Risau, W. (1995) Formation of the blood-brain barrier. In Neuroglia. Kettenmann, H., and Ransom, B., eds. Oxford University Press, pp. 763–776.

    Google Scholar 

  34. Claude, P. (1978) Morphologic factors influencing transepithelial permeability. A model for the resistance of the zonula occludens. J. Membrane Biol. 39, 219–232.

    Article  CAS  Google Scholar 

  35. Claude, P., and Goodenough, D. A. (1973) Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J. Cell Biol. 58, 390–400.

    Article  PubMed  CAS  Google Scholar 

  36. Bentzel, C. J., Fromm, M., Palant, C. E., and Hegel, U. (1987). Protamine alters structure and conductance of Necturus gallbladder tight junctions without major electrical effects on the apical cell membrane. J. Membrane Biol. 95, 9–20.

    Article  CAS  Google Scholar 

  37. Kniesel, U., and Wolburg, H. (1993) Tight junction complexity in the retinal pigment epithelium of the chicken during development. Neurosci. Lett. 149, 71–74.

    Article  PubMed  CAS  Google Scholar 

  38. Wolburg, H., Neuhaus, J., Kniesel, U., et al. (1994) Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J. Cell Sci. 107, 1347–1357.

    PubMed  CAS  Google Scholar 

  39. Kniesel, U., Reichenbach, A., Risau, W., and Wolburg, H. (1994) Quantification of Tight Junction complexity by means of fractal analysis. Tissue Cell 26, 901–912.

    Article  PubMed  CAS  Google Scholar 

  40. Haussdorff, F (1918) Dimension und äußeres Maß. Math. Ann. 79, 157–179.

    Article  Google Scholar 

  41. Mandelbrot, B. B. (1982) The Fractal Geometry of Nature. Freeman and Co., New York.

    Google Scholar 

  42. Glenny, R. W., Robertson, H. T, Yamashiro, S., and Bassingthwaighte, J. B. (1991) Application of fractal analysis to physiology. J. Appl. Physiol. 70, 2351–2367

    PubMed  CAS  Google Scholar 

  43. Smith, T G, Behar, T N., Lange, G. D., Marks, W. B., and Sheriff, W. H. (1991) A fractal analysis of cultured rat optic nerve glial growth and differentiation. Neuroscience 41, 159–166.

    Article  PubMed  Google Scholar 

  44. Fielding, A. (1992) Applications of fractal geometry to biology. Comput. Appl. Biosci. 8, 359–366.

    PubMed  CAS  Google Scholar 

  45. Soltys, Z., Ziaja, M., Pawlinski, R., Setkowicz, Z., and Janeczko, K. (2001) Morphology of reactive microglia in the injured cerebral cortex. Fractal analysis and complementary methods. J. Neurosci. Meth. 63, 90–97.

    CAS  Google Scholar 

  46. Brightman, M. W., and Reese, T. S. (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40, 648–677.

    Article  PubMed  CAS  Google Scholar 

  47. Nagy, Z., Peters, H., and Hüttner, I. (1984) Fracture faces of cell junctions in cerebral endothelium during normal and hyperosmotic conditions. Lab. Invest. 50, 313–322.

    PubMed  CAS  Google Scholar 

  48. Kniesel, U., Risau, W., and Wolburg, H. (1996) Development of blood-brain barrier tight junctions in the rat cortex. Dev. Brain Res. 96, 229–240.

    Article  CAS  Google Scholar 

  49. Griepp, E. B., Dolan, W. J., Robbins, E. S., and Sabatini, D. D. (1983) Participation of plasma membrane proteins in the formation of tight junctions by cultured epithelial cells. J. Cell Biol. 96, 693–702.

    Article  PubMed  CAS  Google Scholar 

  50. Madara, J. L., and Dharmsathaphorn, K. (1985) Occluding junction structure-functiuon relationships in a cultured epithelial monolayer. J. Cell Biol. 101, 2124–2133.

    Article  PubMed  CAS  Google Scholar 

  51. Noske, W., and Hirsch, M. (1986) Morphology of tight junctions in the ciliary epithelium of rabbits during arachidonic acid-induced breakdown of the blood-aqueous barrier. Cell Tissue Res. 245, 405–412.

    Article  PubMed  CAS  Google Scholar 

  52. Suzuki, F., and Nagano, T. (1991) Three-dimensional model of tight junction fibrils based on freeze-fracture images. Cell Tissue Res. 264, 381–384.

    Article  PubMed  CAS  Google Scholar 

  53. Lane, N. J., Reese, T. J., and Kachar, B. (1992) Structural domains of the tight junctional intramembrane fibrils. Tissue Cell 24, 291–300.

    Article  PubMed  CAS  Google Scholar 

  54. Hirokawa, N. (1982) The intramembrane structure of tight junctions. An experimental analysis of the single-fibril and two-fibrils models using the quick-freeze method. J. Ultrastr. Res. 80, 288–301.

    Article  CAS  Google Scholar 

  55. Marcial, M. A., Carlson, S. L., and Madara, J. L. (1984) Partitioning of paracellular conductance along the ileal crypt-villus axis: a hypothesis based on structural analysis with detailed consideration of tight junction structure-function relationship. J. Membrane Biol. 80, 59–70.

    Article  CAS  Google Scholar 

  56. Tsukita, S., and Furuse, M. (1999) Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol. 9, 268–273.

    Article  PubMed  CAS  Google Scholar 

  57. Tsukita, S., and Furuse, M. (2000) Pores in the wall: Claudins constitute tight junction strands containing aqueous pores. J. Cell Biol. 149, 13–16.

    Article  PubMed  CAS  Google Scholar 

  58. Tsukita, S., Furuse, M., and Itoh, M. (2001) Multifunctional strands in tight junctions. Nature Rev. Mol. Cell Biol. 2, 285–293.

    Article  CAS  Google Scholar 

  59. Furuse, M., Fujita, K., Hiiragi, T., Fujimoto, K., and Tsukita, S., (1998) Claudin-1 and-2: novel integral membrane proteins localizing at tight junctions. J. Cell Biol. 141, 1539–1550.

    Article  PubMed  CAS  Google Scholar 

  60. Morita, K., Sasaki, H., Furuse, M., and Tsukita, S. (1999) Endothelial claudin: Claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J. Cell Biol. 147, 185–194.

    Article  PubMed  CAS  Google Scholar 

  61. Furuse, M., Sasaki, H., and Tsukita, S. (1999) Manner of interaction of heterogenous claudin species within and between tight junction strands. J. Cell Biol. 147, 891–903.

    Article  PubMed  CAS  Google Scholar 

  62. Furuse, M., Furuse, K., Sasaki, H., and Tsukita, S. (2001) Conversion of Zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J. Cell Biol. 153, 263–272.

    Article  PubMed  CAS  Google Scholar 

  63. Liebner, S., Fischmann, A., Rascher, G., Duffner, F., Grote, E.-H., and Wolburg, H. (2000) Claudin-1 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. (Berl.) 100, 323–331.

    Article  CAS  Google Scholar 

  64. Liebner, S., Kniesel, U., Kalbacher, H., and Wolburg, H. (2000) Correlation of tight junction morphology with the expression of tight junction proteins in blood-brain barrier endothelial cells. Eur. J. Cell Biol. 79, 707–717.

    Article  PubMed  CAS  Google Scholar 

  65. Risau, W., Engelhardt, B., and Werkele, H. (1990) Immune function of the blood-brain barrier: Incomplete presentation of protein (auto-)antigens by rat brain microvascular endothelium in vitro. J. Cell Biol. 110, 1757–1766.

    Article  PubMed  CAS  Google Scholar 

  66. Kachar, B., and Reese, T. S. (1982) Evidence for the lipid nature of tight junction strands. Nature 296, 464–466.

    Article  PubMed  CAS  Google Scholar 

  67. Pinto da Silva, P., and Kachar, B. (1982) On tight-junction structure. Cell 28, 441–450.

    Google Scholar 

  68. Hein, M., Madefessel, C., Haag, B., Teichmann, K., Post, A., and Galla, H. (1992) Reversible modulation of transepithelial resistance in high and low resistance MDCK-cells by basic amino acids, Ca2+, protamine and protons. Chem. Phys. Lipids 63, 223–233.

    Article  PubMed  CAS  Google Scholar 

  69. Grebenkåmper, K., and Galla, H.-J. (1994) Translational diffusion measurements of a fluorescent phospholipid between MDCK-1 cells support the lipid model of the tight junctions. Chem. Phys. Lipids 71, 133–143.

    Article  PubMed  Google Scholar 

  70. Kan, F. W. K. (1993) Cytochemical evidence for the presence of phospholipids in epithelial tight junction strands. J. Histochem. Cytochem. 41, 649–656.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Wolburg, H., Liebner, S., Lippoldt, A. (2003). Freeze-Fracture Studies of Cerebral Endothelial Tight Junctions. In: Nag, S. (eds) The Blood-Brain Barrier. Methods in Molecular Medicine™, vol 89. Humana Press. https://doi.org/10.1385/1-59259-419-0:51

Download citation

  • DOI: https://doi.org/10.1385/1-59259-419-0:51

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-073-1

  • Online ISBN: 978-1-59259-419-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics