Skip to main content
Log in

Substrate roughness and thickness effects on cold spray nanocrystalline Al−Mg coatings

  • Reviewed Papers
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Nanocrystalline Al−Mg coatings were produced using the cold gas dynamic-spraying technique. Unsieved Al−Mg powder of average nanocrystalline grain size in the range of 10 to 30 nm and with a particle size distribution from 10 to >100 μm was used as the feedstock powder. The resulting coatings were evaluated using scanning electron microscopy (SEM), transmission electron microscopy, as well as microhardness and nanoindentation measurements. Coating observations suggest that the wide particle size distribution of the feedstock powder has a detrimental effect on the coating quality but that it can be successfully mitigated by optimizing the spraying parameters. Nanohardness values close to 3.6 GPa were observed in both the feedstock powder and coatings, suggesting the absence of cold-working hardening effects during the process. The effects of the substrate surface roughness and thickness on coating quality were investigated. The deposited mass measurements performed on the coatings showed that the effect of using different grit sizes for the substrate preparation is limited to small changes in the deposition efficiency of only the first few layers of deposited material. The SEM observation showed that the substrate surface roughness has no significant effect on the macrostructures and microstructures of the coating. The ability to use the cold gas dynamic spraying process to produce coatings on thin parts without noticeable substrate damage and with the same quality as coatings produced on thicker substrates was demonstrated in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.P. Alkhimov, A.N. Papyrin, V.F. Kosarev, N.I. Nesterovich, and M.M. Shushpanov, Gas-Dynamic Spraying Method for Applying a Coating, U.S. Patent 5,302,414, April 12, 1994

  2. T.H. Van Steenkiste, J.R. Smith, and R.E. Teets, Aluminum Coatings via Kinetic Spray with Relatively Large Powder Particles, Surf. Coat. Technol., 2002, 154, p 237–252

    Article  Google Scholar 

  3. C.-J. Li, W.-Y. Li, and H. Fukanuma, Impact Fusion Phenomenon During Cold Spraying of Zinc, Thermal Spray 2004: Advances in Technology and Application, ASM International, May 10–12, 2004 (Osaka, Japan), ASM International, 2004, p 1129 p

    Google Scholar 

  4. C. Borchers, F. Gärtner, T. Stoltenhoff, and H. Kreye, Microstructural and Macroscopic Properties of Cold Sprayed Copper Coatings, J. Appl. Phys., 2003, 93, p 10064–10070

    Article  CAS  Google Scholar 

  5. R. Morgan, P. Fox, J. Pattison, C. Sutcliffe, and W. O'Neill, Analysis of Cold Gas Dynamically Sprayed Aluminum Deposits, Mater. Lett., 2004, 58, p 1317–1320

    Article  CAS  Google Scholar 

  6. C.-J. Li and W.-Y. Li, Deposition Characteristics of Titanium Coating in Cold Spraying, Surf. Coat. Technol., 2003, 167, p 278–283

    Article  CAS  Google Scholar 

  7. R.S. Lima, J. Karthikeyan, C.M. Kay, J. Lindemann, and C.C. Berndt, Microstructural Characteristics of Cold-Sprayed Nanostructured WC-Co Coatings. Thin Solid Films, 2002, 416, p 129–135

    Article  CAS  Google Scholar 

  8. L. Ajdelsztajn, B. Jodoin, G.E. Kim, J.M. Schoenung, and J. Mondoux, Cold Spray Deposition of Nanocrystalline Aluminum Alloys, Metall., Mater. Trans. A, 2005, 36, p 657–666

    Article  Google Scholar 

  9. R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, and S. Sampath, Impact of High Velocity Cold Spray Particles, J. Thermal Spray Technol., 1999, 8(4), p 559–564

    Article  CAS  Google Scholar 

  10. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51, p 4379–4394

    Article  CAS  Google Scholar 

  11. A.P. Alkhimov, A.I. Gudilov, V.F. Kosarev, and N.I. Nesterovich, Specific Features of Microparticle Deformation Upon Impact on a Rigid Barrier, J. Appl. Mech. Tech. Phys., 2000, 41(1), p 188–192

    Article  CAS  Google Scholar 

  12. M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process. Appl. Surf. Sci., 2003, 219, p 211–227

    Article  CAS  Google Scholar 

  13. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54, p 729–742

    Article  CAS  Google Scholar 

  14. P. Richer, B. Jodoin, and L. Ajdelsztajn, ‘Characteristics of Cold Sprayed Coatings Using Nano-Aluminum and Nano-Nickel Powders,’ 16th Canadian Materials Science Conference, Ottawa, ON, Canada, June 2004

  15. E. Sansoucy, B. Jodoin, and L. Ajdelsztajn, Conventional and Nano-Structured Nickel Coatings Produced by Cold Spray Processing, 16th Canadian Materials Science Conference, Ottawa, ON, Canada, June 2004

  16. L. Ajdelsztajn, B. Jodoin, and J.M. Schoenung, Synthesis and Mechanical Properties of Nanocrystalline Ni Coatings Produced by Cold Gas Dynamic Spraying, Surf. Coat. Technol., in press (corrected proof available online February 28, 2006)

  17. L. Ajdelsztajn, A. Zuniga, B. Jodoin, and E. Lavernia, Cold Gas Dynamic Spraying of a High Temperature Al Alloy, Surf. Coat. Technol., in press (corrected proof available online July 19, 2005)

  18. E. Gaffet, N. Malhouroux, and M. Abdellaoui, Far from Equilibirum Phase Transition Induced by Solid State Reaction in the Fe−Si System. J. Alloys Compd., 1993, 194, p 339–360

    Article  CAS  Google Scholar 

  19. L. Ajdelsztajn, F. Tang, G.E. Kim, V. Provenzano, and J.M. Schoenung, Synthesis and Oxidation Behavior of Nanocrystalline McrAIY Bond Coatings, J. Thermal Spray Technol., 2005, 14(1), p 23–30

    Article  CAS  Google Scholar 

  20. L. Ajdelsztajn, J. Lee, K. Chung, F.L. Bastian, and E.J. Lavernia, Synthesis and Nanoindentation Study of High-Velocity Oxygen Fuel Thermal-Sprayed Nanocrystalline and Near-Nanocrystalline Ni Coatings, Metal. Mater. Trans. A, 2002, 33, p 647–655

    Article  Google Scholar 

  21. T. Stoltenhoff, H. Kreye, H.R. Richter, and H. Assadi, Optimization of the Cold Spray Process, Thermal Spray 2001: New Surfaces for a New Millennium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., May 28–30, 2001 (Singapore), ASM International, 2001, 1381 p

    Google Scholar 

  22. T. Stoltenhoff, H. Kreye, and H.J. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Thermal Spray Technol., 2002, 11(4), p 542–550

    Article  CAS  Google Scholar 

  23. J. Vlcek, L. Gimeno, H. Huber, and E. Lugscheider, A Systematic Approach to Material Eligibility for the Cold Spray Process, J. Thermal Spray Technol., 2005, 14(1), p 125–133

    Article  Google Scholar 

  24. J. Vlcek, H. Huber, H. Voggenreiter, A. Fischer, E. Lugscheider, H. Hallen, and G. Pache, Kinetic Powder Compaction Applying the Cold Spray Process: A Study on Parameters, Thermal Spray 2001: New Surfaces for a New Millennium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., May 28–30, 2001, (Singapore), ASM International, 2001, 1381 p

    Google Scholar 

  25. F. Zhou, X.Z. Liao, Y.T. Zhu, S. Dallek, and E.J. Lavernia, Microstructural Evolution During Recovery and Recrystallization of a Nanocrystalline Al−Mg Alloy Prepared by Cryogenic Ball Milling, Acta Mater., 2003, 51, p 2777–2791

    CAS  Google Scholar 

  26. C. Suryanarayana, Nanocrystalline Materials, Int. Mat. Rev., 1995, 40, p 41–64

    CAS  Google Scholar 

  27. B. Jodoin, F. Raletz, and M. Vardelle, Cold Spray Modelling and Validation Using an Optical Diagnostic Method, Surf. Coat. Technol., 2006, 200, p 4424–4432

    Article  CAS  Google Scholar 

  28. B. Jodoin, Cold Spray Nozzle Mach Number Limitation, J. Thermal Spray Technol., 2002, 11(4), p 496–507

    Article  Google Scholar 

  29. E. Rabinowicz, An Adhesive Wear Model Based on Variations in Strength Values, Wear, 1980, 63, p 175–181

    Article  Google Scholar 

  30. T.H. Van Steenkiste, Kinetic Spray: A New Coating Process, Key Eng. Mater., 2001, 197, p 59–86

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The original version of this paper was published in the CD ROM Thermal Spray Connects: Explore Its Surfacing Potential, International Thermal Spray Conference, sponsored by DVS, ASM International, and IIW International Institute of Welding, Basel, Switzerland, May 2–4, 2005, DVS-Verlag GmbH, Düsseldorf, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richer, P., Jodoin, B. & Ajdelsztajn, L. Substrate roughness and thickness effects on cold spray nanocrystalline Al−Mg coatings. J Therm Spray Tech 15, 246–254 (2006). https://doi.org/10.1361/105996306X108174

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105996306X108174

Keywords

Navigation