Skip to main content
Log in

Characterization of copper layers produced by cold gas-dynamic spraying

  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The cold gas-dynamic spray method produces coatings or deposits by introducing solid feedstock particles into a supersonic gas stream developed through the use of a converging-diverging (de Laval) nozzle. The particles thus accelerated impact on a substrate surface and develop into a dense deposit through a process believed to be similar to cold compaction. The work reported here explores the internal nature and physical characteristics of copper deposits produced by the cold gas-dynamic spray method using two vastly different starting powders: in one case, a “spongy” copper obtained by a direct-reduction process, and in the second, a denser, more spheroidal particulate produced by gas atomization. Optical and electron microscopies (scanning electron microscopy [SEM] and transmission electron microscopy [TEM]) were used to observe details of microstructure in the feedstock particles and deposits. Young’s modulus and residual stress measurements for the deposits were obtained through mechanical means, and measurements of hardness and electrical conductivity are reported. The internal structure of the cold-spray deposit was influenced by the surface purity of the feedstock material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.W. Clyne and S.C. Gill: J. Thermal Spray Technol., 1996, vol. 5, pp. 401–18.

    CAS  Google Scholar 

  2. Y.A. Kharlamov: Mater. Sci. Eng., 1987, vol. 93, pp. 1–37.

    Article  CAS  Google Scholar 

  3. G.H. Smith, R.C. Eschenbach, and J.F. Pelton: U.S. Patent 2,861,900, Nov. 25, 1958.

  4. J.A. Browning: J. Thermal Spray Technol., 1992, vol. 1, pp. 289–92.

    ADS  CAS  Google Scholar 

  5. C.F. Rocheville: U.S. Patent 3,100,724, Aug. 13, 1963.

  6. A.P. Alkhimov, V.F. Kosarev, and A.N. Papyrin: Sov. Phys. Dokl., 1990, vol. 35, pp. 1047–49.

    ADS  Google Scholar 

  7. A.P. Alkhimov, A.N. Papyrin, V.F. Kosarev, N.I. Nesterovich, and M.M. Shushpanov: U.S. Patent 5,302,414, Apr. 12, 1994.

  8. H. Gabel and R. Tapphorn: J. Met., 1997, vol. 49 (8), pp. 31–33.

    CAS  Google Scholar 

  9. R.B. Bhagat, M.F. Amateau, A. Papyrin, J.C. Conway, Jr., B. Stutzman, and B. Jones: Thermal Spray: A United Forum for Scientific and Technological Advances, ASM International, Materials Park, OH, 1998, pp. 361–67.

    Google Scholar 

  10. R.C. McCune, A.N. Papyrin, J.N. Hall, W.L. Riggs II, and P.H. Zajchowski: in Advances in Thermal Spray Science and Technology, C.C. Berndt and S. Sampath, eds., ASM International, Materials Park, OH, 1995, pp. 1–5.

    Google Scholar 

  11. R.C. McCune, W.T. Donlon, E.L. Cartwright, A.N. Papyrin, E.F. Rybicki, and J.R. Shadley: in Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, ed., ASM International, Materials Park, OH, 1996, pp. 397–403.

    Google Scholar 

  12. T.H. Vansteenkiste, J.R. Smith, R.E. Teets, J.J. Moleski, D.W. Gorkiewicz, R.P. Tison, D.R. Marantz, K.A. Kowalsky, W.L. Riggs II. P.H. Zajchowski, B. Pilsner, R.C. McCune, and K.J. Barnett: Surf. Coatings Technol., 1999, vol. 111 (1), pp. 62–71.

    Article  Google Scholar 

  13. R.C. Dykhuizen and M.F. Smith: J. Thermal Spray Technol., 1998, vol. 7 (2), pp. 205–12.

    Article  CAS  Google Scholar 

  14. D. Raybould: J. Mater. Sci., 1981, vol. 16, pp. 589–98.

    Article  CAS  Google Scholar 

  15. D.J. Greving, E.F. Rybicki, and J.R. Shadley: J. Thermal Spray Technol., 1995, vol. 3, pp. 379–88.

    Google Scholar 

  16. E.F. Rybicki, J.R. Shadley, Y. Xiong, and D.J. Greving: J. Thermal Spray Technol., 1995, vol. 4 (4), pp. 377–83.

    CAS  Google Scholar 

  17. INCRA Monographs on the Metallurgy of Copper, International Copper Association, Inc., New York, NY, 1992.

  18. G. Montavon, B. Robert, C. Verdy, V. Monin, K.E. Atcholi, and C. Coddet: in Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, ed., ASM International, Materials Park, OH, 1996, pp. 827–32.

    Google Scholar 

  19. R.C. McCune, O.O. Popoola, W.T. Donlon, and E.L. Cartwright: Rapid Prototyping and Manufacturing ’98, Society of Manufacturing Engineers, Dearborn, MI, 1998, pp. 495–520.

    Google Scholar 

  20. D. Ohmannn: Master’s Thesis, University of Wisconsin, Madison, WI, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCune, R.C., Donlon, W.T., Popoola, O.O. et al. Characterization of copper layers produced by cold gas-dynamic spraying. J Therm Spray Tech 9, 73–82 (2000). https://doi.org/10.1361/105996300770350087

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105996300770350087

Keywords

Navigation