Skip to main content
Log in

Human myocardial cell lines generated with SV40 temperature-sensitive mutant TSA58

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Conditionally transformed human myocardial cell lines would be a valuable resource for studying human cardiac cell biology. We generated clonal human fetal cardiocyte cell lines by transfection of fetal ventricular cardiac cell clones with a plasmid containing a replication-defective mutant of the temperature-sensitive SV40 strain tsA58. Multiple resulting cell lines showed similar features, namely: (1) T antigen (TAg) expression at both permissive (34°C) and restrictive (40.5°C) temperatures; (2) extended growth capacity in comparison with parental wild type, when grown at the permissive temperature; (3) both temperature-dependent and serum-responsive growth, and; (4) an incompletely differentiated fetal phenotype which was similar at both permissive and restrictive temperatures and in the presence and absence of serum. The transformed myocyte phenotype was demonstrated using immunocytochemistry, Western and Northern blotting, and reverse transcription-polymerase chain reaction (RT-PCR). Cell lines expressed skeletal α-actin, atrial natriuretic peptide (ANP), and keratins, but no sarcomeric myosin heavy chain or desmin. Immunoreactive sarcomeric actin was expressed predominantly as a truncated protein of approximately 38 kD. The phenotype of the transformed cells differs from that of the wild-type parental cells as well as from those reported by others who have used TAg to immortalize rodent or human ventricular myocytes. Our cell lines should provide a useful tool for study of the molecular mechanisms regulating growth and differentiation in human cardiac muscle cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bader, D. M. T.; Fischman, D. A. Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J. Cell. Biol. 95:763–770; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Chou, J. Differentiated mammalian cell lines immortalized by temperature-sensitive tumor viruses. Mol. Endocrinol. 3:1511–1514; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Delcarpio, J.; Lanson, N. J.; Field, L.; Claycomb, W. Morphological characterization of cardiomyocytes isolated from a transplantable cardiac tumor derived from transgenic mouse atria (AT-1 cells). Circ. Res. 69:1591–1600; 1991.

    PubMed  CAS  Google Scholar 

  • Field, L. J. Atrial natriuretic factor-SV40 T antigen transgenes produce tumors and cardiac arrhythmias in mice. Science 239:1029–1033; 226-1988.

    Article  Google Scholar 

  • Goldman, B.; Mach, A.; Wurzel, J. Epidermal growth factor promotes a cardiomyoblastic phenotype in human fetal cardiac myocytes. Exp. Cell Res. 228:237–245; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, B. I.; Wurzel, J. Effects of subcultivation and culture medium on differentiation of human fetal cardiac myocytes. In Vitro Cell. Dev. Biol. 28A:109–119; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Harlow, E.; Crawford, L. V., Pim, D. C.; Williamson, N. M. Monoclonal antibodies specific for simian virus 40 tumor antigens. J. Virol. 39:861–869; 1981.

    PubMed  CAS  Google Scholar 

  • Jahn, L.; Sadoshima, J.; Greene, A.; Parker, C.; Morgan, K. G.; Izumo, S. Conditional differentiation of heart-and smooth muscle-derived cells transformed by a temperature-sensitive mutant of SV40 T antigen. J. Cell Sci. 109:397–407; 1996.

    PubMed  CAS  Google Scholar 

  • Jha, K. K.; Banga, S.; Palejwala, V.; Ozer, H. L. SV40-mediated immortalization. Exp. Cell Res. 245:1–7; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Katz, E. B.; Steinhelper, M. E.; Delcarpio, J. B.; Daud, A.I.; Claycomb, W. C.; Field, L. J. Cardiomyocyte proliferation in mice expressing alphacardiac myosin heavy chain-SV40 T-antigen transgenes. Am. J. Physiol. 262:H1867-H1876; 1992.

    PubMed  CAS  Google Scholar 

  • Kim, B. H.; Sung, S. R., Choi, E. H. et al. Dedifferentiation of conditionally immortalized hepatocytes with long-term in vitro passage. Exp. Mol. Med. 32(1):29–37; 2000.

    PubMed  Google Scholar 

  • Kimes, B. W.; Brandt, B. L. Properties of a clonal muscle cell line from rat heart. Exp. Cell Res. 98:367–381; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Kohtz, D. S.; Dische, N. R.; Inagami, T.; Godlman, B. Growt and partial differentiation of presumptive human cardiac myoblasts in culture. J. Cell Biol. 108:1067–1078; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, H.; Margulies, K. B.; Piacentino, III, V.; Gaughn, J. P.; Houser, S. R. Patients with end-stage congestive heart failure treated with beta-adrenergic receptor antagonists have improved ventricular myocyte calcium regulatory protein abundance. Circulation 104:1012–1018; 2001.

    PubMed  CAS  Google Scholar 

  • Miller, C.; Rulfs, J.; Jaspers, S. R.; Buckholt, M.; Miller, T. B., Jr. Transformation of adult ventricular myocytes with the temperature sensitive A58 (tsA58) mutant of the SV40 large T antigen. Mol. Cell. Biochem. 136:29–34; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Price, T. N.; Moorwood, K.; James, M. R.; Burke, J. F.; Mayne, L. V. Cell cycle progression, morphology and contact inhibition are regulated by the amound of SV40 T antigen in immortal human cells. Oncogene 9:2897–2904; 1994.

    PubMed  CAS  Google Scholar 

  • Radna, R.; Caton, Y.; Jha, K.; Kaplan, P.; Li, G.; Traganos, F. Growth of immortal simian virus 40 tsA transformed human fibroblasts is temperature dependent. Mol Cell Biol. 9:3093–3096; 1989.

    PubMed  CAS  Google Scholar 

  • Schiaffino, S.; Samuel, J. L.; Sassoon, D., et al. Nonsynchronous accumulation of alpha-skeletal actin and beta-myosin heavy chain mRNAs during early stages of pressure-overload-induced cardiac hypertrophy demonstrated by in situ hybridization. Circ. Res. 64:937–948; 1989.

    PubMed  CAS  Google Scholar 

  • Sen, A.; Dummon, P.; Henderson, S. A.; Gerard, R. D.; Chien, K. R. Terminally differentiated neonatal rat myocardial cells proliferate and maintain specific differentiated functions following expression of SV40 large T antigen. J. Biol. Chem. 263:19132–19136; 1988.

    PubMed  CAS  Google Scholar 

  • Sheffield, J. B.; Graff, D.; Li H. P. A solid-phase method for the quantitation of protein in the presence of sodium dodecyl sulfate and other interfering substances. Anal. Biochem. 165:471–476; 1987.

    Article  Google Scholar 

  • Skalli, O.; Gabbiani, G.; Babai, F.; Pizzolato, G.; Schurch, W. Intermediate-filament proteins and actin isoforms as markers for soft tissue tumor differentiation and origin II: Rhabdomyosarcomas. Am. J. Pathol. 130:515–531; 1988.

    PubMed  CAS  Google Scholar 

  • Tegtmeyer, P. Function of simian virus 40 gene A in transforming infection. Virology 15:613–618; 1975.

    CAS  Google Scholar 

  • Wang, Y.-C.; Neckelmann, N.; Mayne, A.; Hershkowitz, A.; Alagarsamy, S.; Sell, K. W.; Ahmed-Assari, A. Establishment of a human fetal cardiac myocyte cell line. In Vitro Cell. Dev. Biol. 27A:63–74; 1991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce L. Goldman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldman, B.L., Amin, K.M., Kubo, H. et al. Human myocardial cell lines generated with SV40 temperature-sensitive mutant TSA58. In Vitro Cell.Dev.Biol.-Animal 42, 324–331 (2006). https://doi.org/10.1290/0605032.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/0605032.1

Key words

Navigation