Skip to main content

Advertisement

Log in

Modulation of activin a—Induced differentiation in vitro by vascular endothelial growth factor in Xenopus presumptive ectodermal cells

  • Articles
  • Cell Growth/Differentiation/Apoptosis
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

We have previously demonstrated that activin A at low concentrations induced ventral mesoderm including blood-like cells from Xenopus animal caps and that beating heart could be also induced from animal caps treated with 100 ng/ml activin A, suggesting that activin A might be involved in cardiac vasculogenesis. A vascular endothelial growth factor (VEGF) is a powerful mitogen for endothelial cells and is an inducer and regulator of angiogenesis. However, VEGF function in Xenopus development is not clearly identified. In this study, we determined the effect of VEGF on activin A—induced differentiation of animal cap. The VEGF induced duct-like structure composed of Flk-1-positive cells together with the induction of nonvascular tissues, such as neural tissues. This histological result was coincident with our reverse transcriptase-polymerase chain reaction analysis that VEGF together with activin A promoted the expression of Xenopus N-CAM and Xenopus brachyury. This study suggests that VEGF has additional biological activities besides angiogenesis, and arises a different function that VEGF induces stroma cell migration or recruitment that are required for blood vessel formation. This differentiation system will aid in the understanding of angiogenesis during early development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ariizumi, T.; Asashima, M. In vitro induction systems for analyses of amphibian organogenesis and body patterning. Int. J. Dev. Biol. 45:273–279; 2001.

    PubMed  CAS  Google Scholar 

  • Asashima, M.; Ariizumi, T.; Malacinski, G. M. In vitro control of organogenesis and body patterning by activin during early amphibian development. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 126:169–178; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Asashima, M.; Kinoshita, K.; Ariizumi, T.; Malacinski, G. M. Role of activin and other peptide growth factors in body patterning in the early amphibian embryo. Int. Rev. Cytol. 191:1–52; 1999.

    PubMed  CAS  Google Scholar 

  • Bassez, T.; Paris, J.; Omilli, F.; Dorel, C.; Osborne, H. B. Post-transcriptional regulation of ornithine decarboxylase in Xenopus laevis oocytes. Development 110:955–962; 1990.

    PubMed  CAS  Google Scholar 

  • Carmeliet, P.; Ferreira, V.; Breier, G., et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 162:156–159; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Cleaver, O.; Krieg, P. A. VEGF mediates angioblast migration during development of the dorsal aorta in Xenopus. Development 125:3905–3914; 1998.

    PubMed  CAS  Google Scholar 

  • Cleaver, O.; Tonissen, K. F.; Saha, M. S.; Krieg, P. A. Neovascularization of the Xenopus embryo. Dev. Dyn. 210:66–77; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Devic, E.; Paquereau, L.; Vernier, P.; Knibiehler, B.; Audigier, Y. Expression of a new G protein-coupled receptor X-msr is associated with an endothelial lineage in Xenopus laevis. Mech. Dev. 59:129–140; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Dieffenbach, C. W.; Dveksler, G. S. A Laboratory manual. New York: Cold Spring Harbor Laboratory Press; 1995.

    Google Scholar 

  • Dumont, D. J.; Fong, G. H.; Puri, M. C.; Gradwohl, G.; Alitalo, K.; Breitman, M. L. Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev. Dyn. 203:80–92; 1995.

    PubMed  CAS  Google Scholar 

  • Dumont, D. J.; Yamaguchi, T. P.; Conlon, R. A.; Rossant, J.; Breitman, M. L. tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 7:1471–1480; 1992.

    PubMed  CAS  Google Scholar 

  • Ferrara, N.; Carver-Moore, K.; Chen, H., et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Ferrara, N.; Chen, H.; Davis-Smyth, T., et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat. Med. 4:336–340; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Flamme, I.; von Reutern, M.; Drexler, H. C.; Syed-Ali, S.; Risau, W. Overexpression of vascular endothelial growth factor in the avian embryo induces hypervascularization and increased vascular permeability without alterations of embryonic pattern formation. Dev. Biol. 171:399–414; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Fouquet, B.; Weinstein, B. M.; Serluca, F. C.; Oishman, M. C. Vessel patterning in the embryo of the zebrafish: guidance by notochord. Dev. Biol. 183:37–48; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Fukui, Y.; Furue, M.; Myoishi, Y.; Sato, J. D.; Okamoto, T.; Asashima, M. Nutrition supplemented medium for a long-term culture of Xenopus presumptive ectoderm. Dev. Growth Differ. 45:499–506; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Furue, M.; Asashima, M. Isolation of pluripotential stem cells from Xenopus embryos. In: Lanza, R., et al. ed. Handbook of stem cells: embryonic stem cells, and adult and fetal stem cells. New York: Academic Press; Vol. 1, 483–492, 2004.

    Google Scholar 

  • Furue, M.; Myoishi, Y.; Fukui, Y.; Ariizumi, T.; Okamoto, T.; Asashima, M. Activin A induces craniofacial cartilage from undifferentiated Xenopus ectoderm in vitro. Proc. Natl. Acad. Sci. USA 99:15474–15479; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Harland, R. M. In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol. 36:685–695; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Iraha, F.; Saito, Y.; Yoshida, K.; Kawakami, M.; Izutsu, Y.; Daar, I. O.; Maeno M. Common and distinct signals specify the distribution of blood and vascular cell lineages in Xenopus laevis embryos. Dev. Growth Differ. 44:395–407; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Iwama, A.; Hamaguchi, I.; Hashiyama, M.; Murayama, Y.; Yasunaga, K.; Suda, T. Molecular cloning and characterization of mouse TIE and TEK receptor tyrosine kinase genes and their expression in hematopoietic stem cells. Biochem. Biophys. Res. Commun., 195:301–309; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Mills, K. R.; Kruep, D.; Saha, M. S. Elucidating the origins of the vascular system: a fate map of the vascular endothelial and red blood cell lineages in Xenopus laevis. Dev. Biol. 209:352–368; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Miyanaga, Y.; Shiurba, R.; Asashima, M. Blood cell induction in Xenopus animal cap explants: effects of fibroblast growth factor, bone morphogenetic proteins, and activin. Dev. Genes Evol. 209:69–76; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Miyanaga, Y.; Shiurba, R.; Nagata, S.; Pfeiffer, C. J.; Asashima, M. Induction of blood cells in Xenopus embryo explants. Dev. Genes Evol. 207:417–426; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya, H.; Takahashi, S.; Tanegashima, K.; Yokota, C.; Asashima, M. Endoderm differentiation and inductive effect of activin-treated ectoderm in Xenopus. Dev. Growth Differ. 41:391–400; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Noden, D. M. Embryonic origins and assembly of blood vessels. Am. Rev. Respir. Dis. 140:1097–1103; 1989.

    PubMed  CAS  Google Scholar 

  • Okabayashi, K.; Asashima, M. Tissue generation from amphibian animal caps. Curr. Opin. genet. Dev. 13:502–507; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Risau, W.; Flamme, I. Vasculogenesis. Annu. Rev. Cell Dev. Biol. 11:73–91; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Sasai, Y.; Lu, B.; Piccolo, S.; De Robertis, E. M. Endoderm induction by the organizer-secreted factors chordin and noggin in Xenopus animal caps. EMBO J. 15:4547–4555; 1996.

    PubMed  CAS  Google Scholar 

  • Sumoy, L.; Keasey, J. B.; Dittman, T. D.; Kimelman, D. A role for notochord in axial vascular development revealed by analysis of phenotype and the expression of VEGR-2 in zebrafish flh and ntl mutant embryos. Mech. Dev. 63:15–27; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Tamai, K.; Yokota, C.; Ariizumi, T.; Asashima, M. Cytochalasin B inhibitis morphogenetic movement and muscle differentiation of activin-treated ectoderm in Xenopus. Dev. Growth Differ. 41:41–49; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Tjwa, M.; Luttun, A.; Autiero, M.; Carmeliet, P. VEGF and PIGF: two pleiotropic growth factors with distinct roles in development and homeostasis. Cell Tissue Res. 314:5–14; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Waltenberger, J.; Mayr, U.; Frank, H.; Hombach, V. Suramin is a potent inhibitor of vascular endothelial growth factor. A contribution to the molecular basis of its antiangiogenic action. J. Mol. Cell Cardiol. 28:1523–1529; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, T. P.; Dumont, D. J.; Conlon, R. A.; Breitman, M. L.; Rossant, J. flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118:489–498; 1993.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, S., Furue, M., Nagamine, K. et al. Modulation of activin a—Induced differentiation in vitro by vascular endothelial growth factor in Xenopus presumptive ectodermal cells. In Vitro Cell.Dev.Biol.-Animal 41, 104–110 (2005). https://doi.org/10.1290/040801.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/040801.1

Key words

Navigation