Skip to main content
Log in

Overexpression of Lysophosphatidylcholine Acyltransferase 1 and Concomitant Lipid Alterations in Gastric Cancer

  • Gastrointestinal Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

The involvement of lipids in carcinogenic and developmental processes has been reported in some malignancies, but their roles in gastric cancer remain to be analyzed. In this study, we compared the lipid content of gastric cancer tissue and adjacent nonneoplastic mucosa using imaging mass spectrometry.

Methods

Mass spectra were acquired from 12 sections of human gastric cancer tissue and adjacent nonneoplastic mucosa using a matrix-assisted laser desorption-ionization time-of-flight tandem mass spectrometry type mass spectrometer equipped with a 355 nm Nd:YAG laser. Protein expression of lysophosphatidylcholine acyltransferase 1 (LPCAT1), which converts lysophosphatidylcholine (LPC) to phosphatidylcholine (PC) in the presence of acyl-CoA in Lands’ cycle, was immunohistochemically analyzed in 182 gastric cancer specimens.

Results

The averaged mass spectra from the cancer tissue and nonneoplastic mucosa were identical. Most of the signals that differed between cancer tissue and nonneoplastic mucosa corresponded to phospholipids, the majority of which were PC and LPC. Two signals, m/z 798.5 and 496.3, were higher and lower, respectively, in cancer tissues, predominantly in differentiated adenocarcinoma. A database search enabled identification of the ions at m/z 798.5 and m/z 496.3 as potassium-adducted PC (16:0/18:1) and proton-adducted LPC (16:0), respectively. Immunohistochemical analysis revealed that LPCAT1 was highly expressed in cancer lesions compared to nonneoplastic mucosa, predominantly in differentiated adenocarcinoma. LPCAT1 expression levels correlated positively with tumor differentiation and negatively with tumor depth, lymph node metastasis, and tumor stage.

Conclusions

Overexpressed LPCAT1 protein in gastric mucosa appears to play important roles in the tumorigenic process of gastric cancer by converting LPC to PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cancer statistics in Japan. http://www.fpcr.or.jp/publication/statistics.html (2010).

  2. Yamaoka Y. Mechanisms of disease: Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol. 2010;7:629–641.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Santarelli RL, Pierre F, Corpet DE. Processed meat and colorectal cancer: a review of epidemiologic and experimental evidence. Nutr Cancer. 2008;60:131–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ploss A, Dubuisson J. New advances in the molecular biology of hepatitis C virus infection: towards the identification of new treatment targets. Gut. 2012;61(Suppl 1):i25–i35.

    Article  CAS  PubMed  Google Scholar 

  5. Miki D, Ochi H, Hayes CN, Aikata H, Chayama K. Hepatocellular carcinoma: towards personalized medicine. Cancer Sci. 2012;103:846–850.

    Article  CAS  PubMed  Google Scholar 

  6. Mansilla F, da Costa KA, Wang S, et al. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) overexpression in human colorectal cancer. J Mol Med. 2009;87:85–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med. 2001;7:493–496.

    Article  CAS  PubMed  Google Scholar 

  8. Shimma S, Sugiura Y, Hayasaka T, Zaima N, Matsumoto M, Setou M. Mass imaging and identification of biomolecules with MALDI-QIT-TOF-based system. Anal Chem. 2008;80:878–885.

    Article  CAS  PubMed  Google Scholar 

  9. Gessel MM, Norris JL, Caprioli RM. MALDI imaging mass spectrometry: spatial molecular analysis to enable a new age of discovery. J Proteomics. 2014;107:71–82.

    Article  CAS  PubMed  Google Scholar 

  10. Neubert P, Walch A. Current frontiers in clinical research application of MALDI imaging mass spectrometry. Expert Rev Proteomics. 2013;10:259–273.

    Article  CAS  PubMed  Google Scholar 

  11. Eriksson C, Masaki N, Yao I, Hayasaka T, Setou M. MALDI imaging mass spectrometry—a mini review of methods and recent developments. Mass Spectrom (Tokyo). 2013;2:S0022.

    PubMed  PubMed Central  Google Scholar 

  12. Morita Y, Ikegami K, Goto-Inoue N, et al. Imaging mass spectrometry of gastric carcinoma in formalin-fixed paraffin-embedded tissue microarray. Cancer Sci. 2010;101:267–273.

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka H, Zaima N, Yamamoto N, et al. Imaging mass spectrometry reveals unique lipid distribution in primary varicose veins. Eur J Vasc Endovasc Surg. 2010;40:657–663.

    Article  CAS  PubMed  Google Scholar 

  14. Tanaka H, Zaima N, Yamamoto N, et al. Distribution of phospholipid molecular species in autogenous access grafts for hemodialysis analyzed using imaging mass spectrometry. Anal Bioanal Chem. 2011;400:1873–1880.

    Article  CAS  PubMed  Google Scholar 

  15. Tanaka H, Zaima N, Sasaki T, et al. Loss of lymphatic vessels and regional lipid accumulation is associated with great saphenous vein incompetence. J Vasc Surg. 2012;55:1440–1448.

    Article  PubMed  Google Scholar 

  16. Zhou X, Lawrence TJ, He Z, Pound CR, Mao J, Bigler SA. The expression level of lysophosphatidylcholine acyltransferase 1 (LPCAT1) correlates to the progression of prostate cancer. Exp Mol Pathol. 2012;92:105–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Setoguchi T, Kikuchi H, Yamamoto M, et al. Microarray analysis identifies versican and CD9 as potent prognostic markers in gastric gastrointestinal stromal tumors. Cancer Sci. 2011;102:883–889.

    Article  CAS  PubMed  Google Scholar 

  18. Domingues P, Domingues MR, Amado FM, Ferrer-Correia AJ. Characterization of sodiated glycerol phosphatidylcholine phospholipids by mass spectrometry. Rapid Commun Mass Spectrom. 2001;15:799–804.

    Article  CAS  PubMed  Google Scholar 

  19. Hsu FF, Turk J, Thukkani AK, Messner MC, Wildsmith KR, Ford DA. Characterization of alkylacyl, alk-1-enylacyl and lyso subclasses of glycerophosphocholine by tandem quadrupole mass spectrometry with electrospray ionization. J Mass Spectrom. 2003;38:752–763.

    Article  CAS  PubMed  Google Scholar 

  20. Pulfer M, Murphy RC. Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev. 2003;22:332–364.

    Article  CAS  PubMed  Google Scholar 

  21. Weintraub ST, Pinckard RN, Hail M. Electrospray ionization for analysis of platelet-activating factor. Rapid Commun Mass Spectrom. 1991;5:309–311.

    Article  CAS  PubMed  Google Scholar 

  22. Reis A, Domingues P, Ferrer-Correia AJ, Domingues MR. Tandem mass spectrometry of intact oxidation products of diacylphosphatidylcholines: evidence for the occurrence of the oxidation of the phosphocholine head and differentiation of isomers. J Mass Spectrom. 2004;39:1513–1522.

    Article  CAS  PubMed  Google Scholar 

  23. Satoh T, Kubo A, Shimma S, Toyoda M. Mass spectrometry imaging and structural analysis of lipids directly on tissue specimens by using a spiral orbit type tandem time-of-flight mass spectrometer, spiralTOF-TOF. Mass Spectrom (Tokyo). 2012;1:A0013.

    PubMed  PubMed Central  Google Scholar 

  24. Chen X, Hyatt BA, Mucenski ML, Mason RJ, Shannon JM. Identification and characterization of a lysophosphatidylcholine acyltransferase in alveolar type II cells. Proc Natl Acad Sci USA. 2006;103:11724–11729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lands WE. Metabolism of glycerolipids. 2. The enzymatic acylation of lysolecithin. J Biol Chem. 1960;235:2233–2237.

    CAS  PubMed  Google Scholar 

  26. Soupene E, Fyrst H, Kuypers FA. Mammalian acyl-CoA: lysophosphatidylcholine acyltransferase enzymes. Proc Natl Acad Sci USA. 2008;105:88–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakanishi H, Shindou H, Hishikawa D, et al. Cloning and characterization of mouse lung-type acyl-CoA: lysophosphatidylcholine acyltransferase 1 (LPCAT1). Expression in alveolar type II cells and possible involvement in surfactant production. J Biol Chem. 2006;281:20140–20147.

    Article  CAS  PubMed  Google Scholar 

  28. Schone C, Hofler H, Walch A. MALDI imaging mass spectrometry in cancer research: combining proteomic profiling and histological evaluation. Clin Biochem. 2013;46:539–545.

    Article  PubMed  Google Scholar 

  29. van Meer G. Cellular lipidomics. EMBO J. 2005;24:3159–3165.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stubbs CD, Smith AD. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta. 1984;779:89–137.

    Article  CAS  PubMed  Google Scholar 

  31. Exton JH. Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta. 1994;1212:26–42.

    Article  CAS  PubMed  Google Scholar 

  32. Aboagye EO, Bhujwalla ZM. Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res. 1999;59:80–84.

    CAS  PubMed  Google Scholar 

  33. Morita Y, Sakaguchi T, Ikegami K, et al. Lysophosphatidylcholine acyltransferase 1 altered phospholipid composition and regulated hepatoma progression. J Hepatol. 2013;59:292–299.

    Article  CAS  PubMed  Google Scholar 

  34. Wu M, Tu T, Huang Y, Cao Y. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer–related gene. BMC Cancer. 2013;13:44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grupp K, Sanader S, Sirma H, et al. High lysophosphatidylcholine acyltransferase 1 expression independently predicts high risk for biochemical recurrence in prostate cancers. Mol Oncol. 2013;7:1001–1011.

    Article  CAS  PubMed  Google Scholar 

  36. Endoh Y, Tamura G, Watanabe H, Ajioka Y, Motoyama T. The common 18–base pair deletion at codons 418–423 of the E-cadherin gene in differentiated-type adenocarcinomas and intramucosal precancerous lesions of the stomach with the features of gastric foveolar epithelium. J Pathol. 1999;189:201–206.

    Article  CAS  PubMed  Google Scholar 

  37. Saito A, Shimoda T, Nakanishi Y, Ochiai A, Toda G. Histologic heterogeneity and mucin phenotypic expression in early gastric cancer. Pathol Int. 2001;51:165–171.

    Article  CAS  PubMed  Google Scholar 

  38. Smith MG, Hold GL, Tahara E, El-Omar EM. Cellular and molecular aspects of gastric cancer. World J Gastroenterol. 2006;12:2979–2990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gomceli I, Demiriz B, Tez M. Gastric carcinogenesis. World J Gastroenterol. 2012;18:5164–5170.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the Ministry of Education, Culture, Sports, Science, and Technology of Japan Grants-in-Aid 22791270 (H. Kikuchi), 20670004 (M. Setou), and 21390376 (H. Konno), and the Development of System and Technology for Advanced Measurement and Analysis (M. Setou).

Disclosure

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotoshi Kikuchi MD, PhD.

Additional information

Takashi Uehara and Hirotoshi Kikuchi have contributed equally to this article, and both should be considered first author.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 72 kb)

Supplementary material 2 (PDF 294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uehara, T., Kikuchi, H., Miyazaki, S. et al. Overexpression of Lysophosphatidylcholine Acyltransferase 1 and Concomitant Lipid Alterations in Gastric Cancer. Ann Surg Oncol 23 (Suppl 2), 206–213 (2016). https://doi.org/10.1245/s10434-015-4459-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-015-4459-6

Keywords

Navigation