Skip to main content
Log in

PET-Probe: Evaluation of Technical Performance and Clinical Utility of a Handheld High-Energy Gamma Probe in Oncologic Surgery

  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Positron emission tomography (PET) has become an invaluable part of patient evaluation in surgical oncology. PET is less than optimal for detecting lesions <1 cm, and the intraoperative localization of small PET-positive lesions can be challenging as a result of difficulties in surgical exposure. We undertook this investigation to assess the utility of a handheld high-energy gamma probe (PET-Probe) for intraoperative identification of 18F-deoxyglucose (FDG)-avid tumors.

Methods

Forty patients underwent a diagnostic whole-body FDG-PET scan for consideration for surgical exploration and resection. Before surgery, all patients received an intravenous injection of 7 to 10 mCi of FDG. At surgery, the PET-Probe was used to determine absolute counts per second at the known tumor site(s) demonstrated by whole-body PET and at adjacent normal tissue (at least 4 cm away from tumor-bearing sites). Tumor-to-background ratios were calculated.

Results

Thirty-two patients (80%) underwent PET-Probe–guided surgery with therapeutic intent in a recurrent or metastatic disease setting. Eight patients underwent surgery for diagnostic exploration. Anatomical locations of the PET-identified lesions were neck and supraclavicular (n = 8), axilla (n = 5), groin and deep iliac (n = 4), trunk and extremity soft tissue (n = 3), abdominal and retroperitoneal (n = 19), and lung (n = 2). PET-Probe detected all PET-positive lesions. The PET-Probe was instrumental in localization of lesions in 15 patients that were not immediately apparent by surgical exploration.

Conclusions

The PET-Probe identified all lesions demonstrated by PET scanning and, in selected cases, was useful in localizing FDG-avid disease not seen with conventional PET scanning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Selverstone B, Sweet WH, Robinson CV. The clinical use of radioactive phosphorus in the surgery of brain tumors. Ann Surg 1949; 130:643–51

    Article  PubMed Central  Google Scholar 

  2. Morris AC, Barclay TR, Tanida R, Nemcek JV. A miniaturized probe for detecting radioactivity at thyroid surgery. Physics Med Biol 1971; 16:397–404

    Article  Google Scholar 

  3. Knoll GF, Lieberman LM, Nishiyama H, Bierwaltes WH. A gamma ray probe for the detection of ocular melanomas. IEEE Trans Nucl Sci 1972; NS-19:76–80.

    Article  Google Scholar 

  4. Kuhn JA, Corbisiero RM, Buras RR, et al. Intraoperative gamma detection probe with presurgical antibody imaging in colon cancer. Arch Surg 1991; 126:1398–403

    Article  CAS  PubMed  Google Scholar 

  5. Arnold MW, Schneebaum S, Berens A, et al. Intraoperative detection of colorectal cancer with radioimmunoguided surgery and CC49, a second-generation monoclonal antibody. Ann Surg 1992; 216:627–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gulec SA, Serafini AN, Moffat FL, et al. Radioimmunoscintigraphy of colorectal carcinoma using technetium-99m labeled, totally human monoclonal antibody 88BV59H21-2. Cancer Res 1995; 55(Suppl):5774–6

    Google Scholar 

  7. Moffat FL, Vargas-Cuba RD, Serafini AN, et al. Preoperative scintigraphy and operative probe scintimetry of colorectal carcinoma using technetium-99m-88BV59. J Nucl Med 1995; 36:738–45

    PubMed  Google Scholar 

  8. Alex JC, Krag BN. Gamma-probe guided localization of lymph nodes. Surg Oncol 1993; 2:137–43

    Article  CAS  PubMed  Google Scholar 

  9. Krag DN, Meijer SJ, Weaver DL, et al. Minimal-access surgery for staging of malignant melanoma. Arch Surg 1995; 130:654–60

    Article  CAS  PubMed  Google Scholar 

  10. Krag DN, Weaver DL, Alex JC, et al. Surgical resection and radiolocalization of the sentinel lymph node in breast cancer using a gamma probe. Surg Oncol 1993; 2:335–40

    Article  CAS  PubMed  Google Scholar 

  11. Gulec SA, Moffat FL, Carroll RG, et al. Sentinel node localization in early breast cancer. J Nucl Med 1998; 39:1388–93

    CAS  PubMed  Google Scholar 

  12. Gulec SA, Moffat FL, Carroll RG, Krag DN. Gamma probe–guided sentinel node biopsy in breast cancer. Q J Nucl Med 1997; 41:251–61

    CAS  PubMed  Google Scholar 

  13. Bozkurt F, Ugur O, Hamaloglu E, Sayek I, Gulec SA. Optimization of gamma probe-guided parathyroidectomy. Am Surg 2003; 69:720–5

    PubMed  Google Scholar 

  14. Mariani G, Gulec SA, Rubello D, et al. Preoperative localization and radioguided parathyroid surgery. J Nucl Med 2003; 44:1443–58

    PubMed  Google Scholar 

  15. Schirmer WJ, O’Dorisio TM, Schirmer TP, et al. Intraoperative localization of neuroendocrine tumors with 125I-TYR(3)-octreotide and a hand held gamma-detecting probe. Surgery 1993; 114:745–52

    CAS  PubMed  Google Scholar 

  16. Ahlman H, Tisell L-E, Wangberg B, et al. Somatostatin receptors on neuroendocrine tumors—a way to intraoperative diagnosis and localization. Yale J Biol Med 1995; 67:215–21

    Google Scholar 

  17. Vansteenkiste J, Fischer BM, Dooms C, Mortensen J. Positron-emission tomography in prognostic and therapeutic assessment of lung cancer: systematic review. Lancet Oncol 2004; 5:531–40

    Article  PubMed  Google Scholar 

  18. Burton C, Ell P, Linch D. The role of PET imaging in lymphoma. Br J Haematol 2004; 126:772–84

    Article  PubMed  Google Scholar 

  19. Siggelkow W, Rath W, Buell U, Zimny M. FDG PET and tumour markers in the diagnosis of recurrent and metastatic breast cancer. Eur J Nucl Med Mol Imaging 2004; 31(Suppl 1):S118–24

    PubMed  Google Scholar 

  20. van Westreenen HL, Westerterp M, Bossuyt PM, et al. Systematic review of the staging performance of 18F-fluorodeoxyglucose positron emission tomography in esophageal cancer. J Clin Oncol 2004; 22:3805–12

    Article  PubMed  Google Scholar 

  21. Gulec SA, Faries MB, Lee CC, Glass E, Morton DL, Essner R. The role of FDG-PET in the management of patients with metastatic melanoma: impact on surgical decision making. Clin Nucl Med 2003; 28:961–5

    Article  PubMed  Google Scholar 

  22. Wiering B, Ruers TJ, Oyen WJ. Role of FDG-PET in the diagnosis and treatment of colorectal liver metastases. Expert Rev Anticancer Ther 2004; 4:607–13

    Article  PubMed  Google Scholar 

  23. Hustinx R. PET imaging in assessing gastrointestinal tumors. Radiol Clin North Am 2004; 42:1123–39

    Article  PubMed  Google Scholar 

  24. Weber WA, Ott K. Imaging of esophageal and gastric cancer. Semin Oncol 2004; 31:530–41

    Article  PubMed  Google Scholar 

  25. de Groot JW, Links TP, Jager PL, Kahraman T, Plukker JT. Impact of 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in patients with biochemical evidence of recurrent or residual medullary thyroid cancer. Ann Surg Oncol 2004; 11:786–94

    Article  PubMed  Google Scholar 

  26. Wang W, Larson SM, Fazzari M, et al. Prognostic value of [18F]fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer. J Clin Endocrinol Metab 2000; 85:1107–13

    CAS  PubMed  Google Scholar 

  27. Kumar R, Alavi A. PET imaging in gynecologic malignancies. Radiol Clin North Am 2004; 4:1155–67

    Article  Google Scholar 

  28. Performance Measurements and Quality Control Guidelines for Non-Imaging Intraoperative Gamma Probes (NEMA Standards Publication NU 3-2004). National Electrical Manufacturers Association. Rosslyn, Virginia: Nema, 2004

  29. Moffat FL Jr, Gulec SA, Sittler SY, et al. Unfiltered sulfur colloid and sentinel node biopsy for breast cancer: technical and kinetic considerations. Ann Surg Oncol 1999; 6:746–55

    Article  PubMed  Google Scholar 

  30. Ross GL, Soutar DS, Gordon MacDonald D, et al. Sentinel node biopsy in head and neck cancer. Preliminary results of a multicenter trial. Ann Surg Oncol 2004; 11:690–6

    Article  PubMed  Google Scholar 

  31. Gulec SA, Moffat FL, Carroll RG. The expanding clinical role for intraoperative gamma probes. Nucl Med Ann 1997; 209–37.

  32. Zanzonico P, Heller S. The intraoperative gamma probe: basic principles and choices available. Semin Nucl Med 2000; 30:33–48

    Article  CAS  PubMed  Google Scholar 

  33. Perkins AC, Britten AJ. Specification and performance of intra-operative gamma probes for sentinel node detection. Nucl Med Commun 1999; 20:309–15

    Article  CAS  PubMed  Google Scholar 

  34. Hoffman EJ, Tornai MP, Janecek M, et al. Intraoperative probes and imaging probes. Eur J Nucl Med 1999; 26:913–35

    Article  CAS  PubMed  Google Scholar 

  35. Essner R, Hsueh EC, Haigh PI, et al. Application of an [18F] fluorodeoxyglucose-sensitive probe for the intraoperative detection of malignancy. J Surg Res 2001; 96:120–6

    Article  CAS  PubMed  Google Scholar 

  36. Boerner AR, Weckesser M, Herzog H, et al. Optimal scan time for fluorine-18 fluorodeoxyglucose positron emission tomography in breast cancer. Eur J Nucl Med 1999; 26:226–30

    Article  CAS  PubMed  Google Scholar 

  37. Hsueh EC, Essner R, Foshag LJ, et al. Prolonged survival after complete resection of disseminated melanoma and active immunotherapy with a therapeutic cancer vaccine. J Clin Oncol 2002; 20:4549–54

    Article  CAS  PubMed  Google Scholar 

  38. Fuzun M, Terzi C, Sokmen S, et al. Potentially curative resection for locoregional recurrence of colorectal cancer. Surg Today 2004; 34:907–12

    Article  PubMed  Google Scholar 

  39. Cobben DC, Jager PL, Elsinga PH, et al. 3′-18F-fluoro-3′-deoxy-L-thymidine: a new tracer for staging metastatic melanoma? J Nucl Med 2003; 44:1927–32

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by PET-NET Inc. F.D. is the president and the chief scientist of IntraMedical Imaging LLC., Los Angeles, CA. R.E. is a consulting physician for IntraMedical Imaging LLC. S.G. has no commercial associations with any of the products discussed in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seza A. Gulec MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulec, S.A., Daghighian, F. & Essner, R. PET-Probe: Evaluation of Technical Performance and Clinical Utility of a Handheld High-Energy Gamma Probe in Oncologic Surgery. Ann Surg Oncol 23 (Suppl 5), 9020–9027 (2016). https://doi.org/10.1245/ASO.2006.05.047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/ASO.2006.05.047

Keywords

Navigation