Skip to main content

Advertisement

Log in

Ratiometric Delivery of Mitoxantrone and Berberine Co-encapsulated Liposomes to Improve Antitumor Efficiency and Decrease Cardiac Toxicity

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Combination therapy is one of the most common clinical practices in the treatment of malignancies. Synergistic effects, however, are produced only when optimal ratios of combined drugs were delivered to tumor cells. Thus, carriers co-encapsulating of multiple drugs are widely utilized for coordinated delivery. Herein, co-encapsulated pegylated liposomal formulation of mitoxantrone (MIT) and berberine (BER) at an optimal ratio has been developed (MBL) with high encapsulation efficiency (EE) and drug loading in order to achieve the purpose of ratiometric loading and delivery. MBL can not only extend blood circulation but also enhance tumor accumulation for both MIT and BER. More importantly, MBL can maintain the originally desired drug ratio in tumors within 48 h of intravenous injection for synergistic therapy. Compared with the liposomal formulation of MIT-treated group (ML), the progression of tumor growth was inhibited significantly in murine 4T1 breast tumor model after the treatment of MBL, as well as a lower cardiac toxicity. In addition, MBL evidently prolonged the survival of mice with L1210 ascitic tumor model. In summary, such a strategy of co-encapsulated liposomes could improve the clinical applications against multiple cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Colli LM, Machiela MJ, Zhang H, Myers TA, Jessop L, Delattre O, et al. Landscape of combination immunotherapy and targeted therapy to improve cancer management. Cancer Res. 2017;77(13):3666–71. https://doi.org/10.1158/0008-5472.CAN-16-3338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M. P. Davis and R. Panikkar, Sarcopenia associated with chemotherapy and targeted agents for cancer therapy. Ann Palliat Med. 2019; 8(1):86–101. https://doi.org/10.21037/apm.2018.08.02.

  3. Meng F, Wang J, Ping Q, Yeo Y. Camouflaging nanoparticles for ratiometric delivery of therapeutic combinations. Nano Lett. 2019;19(3):1479–87. https://doi.org/10.1021/acs.nanolett.8b04017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  Google Scholar 

  5. Miao L, Guo S, Lin CM, Liu Q, Huang L. Nanoformulations for combination or cascade anticancer therapy. Adv Drug Deliv Rev. 2017;115:3–22. https://doi.org/10.1016/j.addr.2017.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Erkan M, Adler G, Apte MV, Bachem MG, Buchholz M, Detlefsen S, et al. StellaTUM: current consensus and discussion on pancreatic stellate cell research. Gut. 2012;61(2):172–8. https://doi.org/10.1136/gutjnl-2011-301220.

    Article  CAS  PubMed  Google Scholar 

  7. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544–8. https://doi.org/10.1038/nature25501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ochiai Y, Sumi K, Sano E, Yoshimura S, Yamamuro S, Ogino A, et al. Antitumor effects of ribavirin in combination with TMZ and IFN-beta in malignant glioma cells. Oncol Lett. 2020;20(5):178. https://doi.org/10.3892/ol.2020.12039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Foo EC, Russell M, Lily O, Ford HL. Mitoxantrone in relapsing-remitting and rapidly progressive multiple sclerosis: ten-year clinical outcomes post-treatment with mitoxantrone. Mult Scler Relat Disord. 2020;44:102330. https://doi.org/10.1016/j.msard.2020.102330.

    Article  CAS  PubMed  Google Scholar 

  10. Wawrzyniak S, Rzepinski L. Is there a new place for mitoxantrone in the treatment of multiple sclerosis? Neurol Neurochir Pol. 2020;54(1):54–61. https://doi.org/10.5603/PJNNS.a2019.0069.

    Article  PubMed  Google Scholar 

  11. Farsani FM, Ganjalikhany MR, Vallian S. Studies on non-synonymous polymorphisms altering human DNA topoisomerase II-alpha interaction with amsacrine and mitoxantrone: an in silico approach. Curr Cancer Drug Targets. 2017;17(7):657–68. https://doi.org/10.2174/1568009617666161109142629.

    Article  CAS  PubMed  Google Scholar 

  12. Evison BJ, Sleebs BE, Watson KG, Phillips DR, Cutts SM. Mitoxantrone, more than just another topoisomerase II poison. Med Res Rev. 2016;36(2):248–99. https://doi.org/10.1002/med.21364.

    Article  CAS  PubMed  Google Scholar 

  13. Murray TJ. The cardiac effects of mitoxantrone: do the benefits in multiple sclerosis outweigh the risks? Expert Opin Drug Saf. 2006;5(2):265–74. https://doi.org/10.1517/14740338.5.2.265.

    Article  CAS  PubMed  Google Scholar 

  14. Xie XW, Liu ZP, Li X. Design, synthesis, bioevaluation of LFC- and PA-tethered anthraquinone analogues of mitoxantrone. Bioorg Chem. 2020;101:104005. https://doi.org/10.1016/j.bioorg.2020.104005.

    Article  CAS  PubMed  Google Scholar 

  15. Menna P, Salvatorelli E, Minotti G. Rethinking drugs from chemistry to therapeutic opportunities: pixantrone beyond anthracyclines. Chem Res Toxicol. 2016;29(8):1270–8. https://doi.org/10.1021/acs.chemrestox.6b00190.

    Article  CAS  PubMed  Google Scholar 

  16. Tong N, Zhang J, Chen Y, Li Z, Luo Y, Zuo H, et al. Berberine sensitizes mutliple human cancer cells to the anticancer effects of doxorubicin in vitro. Oncol Lett. 2012;3(6):1263–7. https://doi.org/10.3892/ol.2012.644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. B. Sun, Y. Yang, M. He, Y. Jin, X. Cao, and Du X, et al., Hepatoprotective role of berberine on doxorubicin induced hepatotoxicity-involvement of Cyp. Curr Drug Metab. 2020; 21(7):541–547. https://doi.org/10.2174/1389200221666200620203648.

  18. Zhao X, Wu J, Muthusamy N, Byrd JC, Lee RJ. Liposomal coencapsulated fludarabine and mitoxantrone for lymphoproliferative disorder treatment. J Pharm Sci. 2008;97(4):1508–18. https://doi.org/10.1002/jps.21046.

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Liu J, Ma A, Chen Y. Cardioprotective effect of berberine against myocardial ischemia/reperfusion injury via attenuating mitochondrial dysfunction and apoptosis. Int J Clin Exp Med. 2015;8(8):14513–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Salehi S, Filtz TM. Berberine possesses muscarinic agonist-like properties in cultured rodent cardiomyocytes. Pharmacol Res. 2011;63(4):335–40. https://doi.org/10.1016/j.phrs.2010.12.004.

    Article  CAS  PubMed  Google Scholar 

  21. Maiti P, Plemmons A, Dunbar GL. Combination treatment of berberine and solid lipid curcumin particles increased cell death and inhibited PI3K/Akt/mTOR pathway of human cultured glioblastoma cells more effectively than did individual treatments. PLoS One. 2019;14(12):e0225660. https://doi.org/10.1371/journal.pone.0225660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goldman A, Majumder B, Dhawan A, Ravi S, Goldman D, Kohandel M, et al. Temporally sequenced anticancer drugs overcome adaptive resistance by targeting a vulnerable chemotherapy-induced phenotypic transition. Nat Commun. 2015;6:6139. https://doi.org/10.1038/ncomms7139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miao L, Guo S, Zhang J, Kim WY, Huang L. Nanoparticles with precise ratiometric co-loading and co-delivery of gemcitabine monophosphate and cisplatin for treatment of bladder cancer. Adv Funct Mater. 2014;24(42):6601–11. https://doi.org/10.1002/adfm.201401076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abraham SA, Mckenzie C, Masin D, Ng R, Harasym TO, Mayer LD, et al. In vitro and in vivo characterization of doxorubicin and vincristine coencapsulated within liposomes through use of transition metal ion complexation and pH gradient loading. Clin Cancer Res. 2004;10(2):728–38. https://doi.org/10.1158/1078-0432.ccr-1131-03.

    Article  CAS  PubMed  Google Scholar 

  25. Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK, et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol. 2018;36(26):2684–92. https://doi.org/10.1200/JCO.2017.77.6112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krauss AC, Gao X, Li L, Manning ML, Patel P, Fu W, et al. FDA approval summary: (daunorubicin and cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia. Clin Cancer Res. 2019;25(9):2685–90. https://doi.org/10.1158/1078-0432.CCR-18-2990.

    Article  CAS  PubMed  Google Scholar 

  27. Zeidner JF, Karp JE. Reason for CPXcitement in AML. Blood. 2014;123(21):3211–2. https://doi.org/10.1182/blood-2014-04-568725.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao X, Zhang JJ, Wang X, Bu XY, Lou YQ, Zhang GL. Effect of berberine on hepatocyte proliferation, inducible nitric oxide synthase expression, cytochrome P450 2E1 and 1A2 activities in diethylnitrosamine- and phenobarbital-treated rats. Biomed Pharmacother. 2008;62(9):567–72. https://doi.org/10.1016/j.biopha.2007.02.009.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang R, Zhang Y, Zhang Y, Wang X, Gao X, Liu Y, et al. Ratiometric delivery of doxorubicin and berberine by liposome enables superior therapeutic index than Doxil(). Asian J Pharm Sci. 2020;15(3):385–96. https://doi.org/10.1016/j.ajps.2019.04.007.

    Article  PubMed  Google Scholar 

  30. Zhang J, Shen L, Li X, Song W, Liu Y, Huang L. Nanoformulated codelivery of quercetin and alantolactone promotes an antitumor response through synergistic immunogenic cell death for microsatellite-stable colorectal cancer. ACS Nano. 2019;13(11):12511–24. https://doi.org/10.1021/acsnano.9b02875.

    Article  CAS  PubMed  Google Scholar 

  31. Ghosh S, Lalani R, Maiti K, Banerjee S, Patel V, Bhowmick S, et al. Optimization and efficacy study of synergistic vincristine coloaded liposomal doxorubicin against breast and lung cancer. Nanomedicine (Lond). 2020;15(26):2585–607. https://doi.org/10.2217/nnm-2020-0169.

    Article  CAS  Google Scholar 

  32. Li C, Cui J, Wang C, Li Y, Zhang H, Wang J, et al. Encapsulation of mitoxantrone into pegylated SUVs enhances its antineoplastic efficacy. Eur J Pharm Biopharm. 2008;70(2):657–65. https://doi.org/10.1016/j.ejpb.2008.05.019.

    Article  CAS  PubMed  Google Scholar 

  33. Yang W, Yang Z, Fu J, Guo M, Sun B, Wei W, et al. The influence of trapping agents on the antitumor efficacy of irinotecan liposomes: head-to-head comparison of ammonium sulfate, sulfobutylether-beta-cyclodextrin and sucrose octasulfate. Biomater Sci. 2018;7(1):419–28. https://doi.org/10.1039/c8bm01175c.

    Article  CAS  PubMed  Google Scholar 

  34. Yang Z, Chi D, Wang Q, Guo X, Lv Q, Wang Y. Improved antitumor activity and tolerability of cabazitaxel derived remote-loading liposomes. Int J Pharm. 2020;589:119814. https://doi.org/10.1016/j.ijpharm.2020.119814.

    Article  CAS  PubMed  Google Scholar 

  35. Li C, Zhao X, Deng C, Wang C, Wei N, Cui J. Pegylated liposomal mitoxantrone is more therapeutically active than mitoxantrone in L1210 ascitic tumor and exhibits dose-dependent activity saturation effect. Int J Pharm. 2014;460(1–2):165–72. https://doi.org/10.1016/j.ijpharm.2013.10.023.

    Article  CAS  PubMed  Google Scholar 

  36. Razavi-Azarkhiavi K, Jafarian AH, Abnous K, Razavi BM, Shirani K, Zeinali M, et al. The comparison of biodistribution, efficacy and toxicity of two PEGylated liposomal doxorubicin formulations in mice bearing C-26 colon carcinoma: a preclinical study. Drug Res (Stuttg). 2016;66(6):330–6. https://doi.org/10.1055/s-0035-1569447.

    Article  CAS  Google Scholar 

  37. Qian S, Li C, Zuo Z. Pharmacokinetics and disposition of various drug loaded liposomes. Curr Drug Metab. 2012;13(4):372–95. https://doi.org/10.2174/138920012800166562.

    Article  CAS  PubMed  Google Scholar 

  38. Nikitin MP, Zelepukin IV, Shipunova VO, Sokolov IL, Deyev SM, Nikitin PI. Enhancement of the blood-circulation time and performance of nanomedicines via the forced clearance of erythrocytes. Nat Biomed Eng. 2020;4(7):717–31. https://doi.org/10.1038/s41551-020-0581-2.

    Article  CAS  PubMed  Google Scholar 

  39. Rad A. Tahmasbi, C. W. Chen, W. Aresh, Y. Xia, P. S. Lai, and M. P. Nieh, Combinational Effects of active targeting, shape, and enhanced permeability and retention for cancer theranostic nanocarriers. ACS Appl Mater Interfaces 2019; 11(11):10505–10519. https://doi.org/10.1021/acsami.8b21609.

  40. Qhattal HS, Hye T, Alali A, Liu X. Hyaluronan polymer length, grafting density, and surface poly(ethylene glycol) coating influence in vivo circulation and tumor targeting of hyaluronan-grafted liposomes. ACS Nano. 2014;8(6):5423–40. https://doi.org/10.1021/nn405839n.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dadashzadeh S, Vali AM, Rezaie M. The effect of PEG coating on in vitro cytotoxicity and in vivo disposition of topotecan loaded liposomes in rats. Int J Pharm. 2008;353(1–2):251–9. https://doi.org/10.1016/j.ijpharm.2007.11.030.

    Article  CAS  PubMed  Google Scholar 

  42. Santos N. Dos, C. Allen, A. M. Doppen, M. Anantha, K. A. Cox, and R. C. Gallagher, et al., Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding. Biochim Biophys Acta 2007; 1768(6):1367–1377. https://doi.org/10.1016/j.bbamem.2006.12.013.

Download references

Funding

This work was financially supported by the Career Development Program for Young and Middle-aged Teachers in Shenyang Pharmaceutical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zhao, L., Wang, X. et al. Ratiometric Delivery of Mitoxantrone and Berberine Co-encapsulated Liposomes to Improve Antitumor Efficiency and Decrease Cardiac Toxicity. AAPS PharmSciTech 22, 46 (2021). https://doi.org/10.1208/s12249-020-01910-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01910-x

KEY WORDS

Navigation