Skip to main content

Advertisement

Log in

Application of Factorial Design and Rheology to the Development of Photoprotective Formulations

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

A sunscreen should form a stable and homogeneous film over the skin surface, which can improve its photoprotective activity and avoid adverse effects. For this purpose, the definition of the appropriate vehicle is of fundamental importance since emulsifying agents are known to directly influence the stability, sensorial properties and surface tension of sunscreens, modulating their film-forming performance. In this context, the objective of the present study was to systematically develop formulations with UVB/UVA protection and evaluate the effect of wax concentration on the rheological behaviour. A 2-level full factorial design was applied for the development of four formulations. Two categorical factors were evaluated, glyceryl stearate plus PEG-75 stearate (Wax 1) and methyl glucose sesquistearate (Wax 2). Rheological behaviour was determined in triplicate and rheograms were analysed using the Ostwald model. Rheological parameters were correlated by the Spearman rank correlation test and effects were evaluated by Pareto chart and surface response methodology (SRM). It was possible to identify the pseudoplastic and thixotropic behaviour of all formulations exhibiting a thinning effect on higher shear stress. Factorial analysis showed that both waxes significantly influenced consistency and thixotropic behaviour. The effect of Wax 2 concentration in thixotropy was positive and of higher magnitude and a synergistic effect was also observed. Spearman correlation coefficient of consistency index and apparent viscosity was significantly strong and positive. Finally, factorial analysis allowed the determination of the effects of waxes on the rheological parameters of the formulations. A quantitative relationship between wax concentration and significant responses was established, permitting the prediction of desirable rheological properties for improved sunscreen efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. I
Fig. II
Fig. III
Fig. IV
Fig. V

Similar content being viewed by others

References

  1. Yaxi L, Xiaoyang H, Chunsheng Y, Yanyu P, Xinxin L, Guan J, et al. Photoprotection of cerium oxide nanoparticles against UVA radiation-induced senescence of human skin fibroblasts due to their antioxidant properties. Sci Rep. 2019;9:2595. https://doi.org/10.1038/s41598-019-39486-7.

    Article  CAS  Google Scholar 

  2. Azizoglu GA, Tanriverdi ST, Kose FA, et al. AAPS PharmSciTech. 2017;18:2987. https://doi.org/10.1208/s12249-017-0786-1.

    Article  CAS  Google Scholar 

  3. Shah P, He YY. Molecular regulation of UV-induced DNA repair. Photochem Photobiol. 2015;91(2):254–64. https://doi.org/10.1111/php.12406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gerst C. An eye on research. In: L’OREAL Research & Innovation. 2017. http://loreal-dam-videos-corp-en-cdn.brainsonic.com/corpen/20170713-180821-88aa8d93/attachedFiles/87f1ea2eb7153051ce58ed3a67740d79.pdf. Accessed 26 June 2019.

  5. Federman DG, Kirsner RS, Concato J. Sunscreen counseling by US physicians. 2014;312(1):87–8. https://doi.org/10.1001/jama.2014.4320.

  6. Liu H, Tuchinda P, Fishelevich R, Harberts E, Gaspari A. A. Human in vitro skin organ culture as a model system for evaluating DNA repair. Journal of dermatological science. 2014;74(3):236–41. https://doi.org/10.1016/j.jdermsci.2014.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kockler J, Oelgemöller M, Robertson S, Glass B. Influence of titanium dioxide particle size on the photostability of the chemical UV-filters butyl methoxy dibenzoylmethane and octocrylene in a microemulsion. Cosmetics. 2014;1(2):128–39. https://doi.org/10.3390/cosmetics1020128.

    Article  Google Scholar 

  8. Gianeti MD, Gaspar LR, Camargo Júnior FB, Maia Campos PMBG. Benefits of combinations of vitamin A, C and E derivatives in the stability of cosmetic formulations. Molecules. 2012;17(2):2219–30. https://doi.org/10.3390/molecules17022219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gaspar LR, Maia Campos PMBG. Photostability and efficacy studies of topical formulations containing UV-filters combination and vitamins A, C and E. Int J Pharm. 2007;343(1–2):181–9. https://doi.org/10.1016/j.ijpharm.2007.05.048.

    Article  CAS  PubMed  Google Scholar 

  10. Burnett ME, Hu JY, Wang SQ. Sunscreens: obtaining adequate photoprotection. Dermatologic therapy. Dermatol Ther. 2012;25(3):244–51. https://doi.org/10.1111/j.1529-8019.2012.01503.x.

    Article  PubMed  Google Scholar 

  11. Cozzi AC, Perugini P, Gourion-Arsiquaud S. Comparative behavior between sunscreens based on free or encapsulated UV filters in term of skin penetration, retention and photo-stability. Eur J Pharm Sci. 2018;121:309–18. https://doi.org/10.1016/j.ejps.2018.06.001.

    Article  CAS  PubMed  Google Scholar 

  12. Calixto LS, Maia Campos PMBG. Physical mechanical characterization of cosmetic formulations and correlation between instrumental measurements and sensorial properties. Int J Cosmet Sci. 2017;39(5):527–34. https://doi.org/10.1111/ics.12406.

    Article  CAS  PubMed  Google Scholar 

  13. Gaspar LR, Maia Campos PMBG. Rheological behavior and the SPF of sunscreens. Int J Pharm. 2003;250(1):35–44. https://doi.org/10.1016/S0378-5173(02)00462-3.

    Article  CAS  PubMed  Google Scholar 

  14. Nash JF, Tanner PR. Relevance of UV filter/sunscreen product photostability to human safety. Photodermatol Photoimmunol Photomed. 2014;30(2–3):88–95. https://doi.org/10.1111/phpp.12113.

    Article  CAS  PubMed  Google Scholar 

  15. Deng Y, Ediriwickrema A, Yang F, Lewis J, Girardi M, Saltzman WM. A sunblock based on bioadhesive nanoparticles. Nature materials. 2015;14(12):1278. https://doi.org/10.1038/nmat4422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bekker M, Webber GV, Louw NR. Relating rheological measurements to primary and secondary skin feeling when mineralbased and Fischer–Tropsch wax-based cosmetic emulsions and jellies are applied to the skin. Int J Cosmet Sci. 2013;35:354–61.

    Article  CAS  PubMed  Google Scholar 

  17. Sohn M, Hêche A, Herzog B, Imanidis G. Film thickness frequency distribution of different vehicles determines sunscreen efficacy. J Biomed Opt. 2014;19(11):115005. https://doi.org/10.1117/1.JBO.19.11.115005.

    Article  CAS  PubMed  Google Scholar 

  18. Ferrero L, Pissavini M, Doucet O. How a calculated model of sunscreen film geometry can explain in vitro and in vivo SPF variation. Photochem Photobiol Sci. 2010;9(4):540–51. https://doi.org/10.1039/b9pp00183b.

    Article  CAS  PubMed  Google Scholar 

  19. Teichmann A, Pissavini M, Ferrero L, Dehais A, Zastrow L, Richter H, et al. Investigation of the homogeneity of the distribution of sunscreen formulations on the human skin: characterization and comparison of two different methods. J Biomed Opt. 2006;11(6):064005. https://doi.org/10.1117/1.2409291.

    Article  PubMed  Google Scholar 

  20. Korn V, Surber C, Imanidis G. Skin surface topography and texture analysis of sun-exposed body sites in view of sunscreen application. Skin Pharmacol Physiol. 2016;29:291–9. https://doi.org/10.1159/000450760.

    Article  PubMed  Google Scholar 

  21. Hewitt J, Dahms GH. Rheology - its effect on physical SPFs. Soap Perfum Cosmet. 1996;69(3):23–5.

    Google Scholar 

  22. Chaudhary H, Kohli K, Amin S, Rathee P, Kumar V. Optimization and formulation design of gels of diclofenac and curcumin for transdermal drug delivery by Box-Behnken statistical design. J Pharm Sci. 2011;100(2):580–93. https://doi.org/10.1002/jps.22292.

    Article  CAS  PubMed  Google Scholar 

  23. Fangueiro JF, Andreani T, Egea MA, Garcia ML, Souto SB, Souto EB. Experimental factorial design applied to mucoadhesive lipid nanoparticles via multiple emulsion process. Colloids Surf B: Biointerfaces. 2012;100:84–9. https://doi.org/10.1016/j.colsurfb.2012.04.014.

    Article  CAS  PubMed  Google Scholar 

  24. Calixto LS, Infante VHP, Maia Campos PMBG. Design and characterization of topical formulations: correlations between instrumental and sensorial measurements. AAPS PharmSciTech. 2018;19(4):1512–9. https://doi.org/10.1208/s12249-018-0960-0.

    Article  CAS  PubMed  Google Scholar 

  25. Dahms GH. Einflub der Thixotropie auf die Lichtschutzwirkung von Sonnenschutzemulsionen. Parfuem Kosmet. 1994;75:675–9.

    CAS  Google Scholar 

  26. Dejaegher B, Heyden YV. Experimental designs and their recent advances in set-up, data interpretation, and analytical applications. J Pharm Biomed Anal. 2011;56:141–58.

    Article  CAS  PubMed  Google Scholar 

  27. Mukaka MM. A guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012;24(3):69–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Vergilio MM, da Rocha Filho PA. Characterization, sensory and instrumental analysis of high-selling sunscreens and the correlation between its properties [dissertation]. Ribeirao Preto: University of Sao Paulo; 2018.

    Google Scholar 

  29. Vincendet M., Cebrian, J., Blasco L. Use of methyl glucoside derivatives in cosmetic compositions for the formation of liquid crystal structures improving moisturization and active penetration. In: The IP.com Prior Art Database. 2015. https://ip.com/IPCOM/000242206. Accessed 26 June 2019.

  30. Vollhardt J, Schoop R, Janssen A, Mendrok-Edinger C, Klock J, Baltussen M, et al. The future of sunscreens: what lies beyond SPF 50+. Sofw J. 2015;141:42–8.

    Google Scholar 

  31. Al-Malah KI, Azzam MOJ, Abu-Jdayil B. Effect of glucose concentration on the rheological properties of wheat-starch dispersions. Food Hydrocolloids. 2000;14(5):491–6. https://doi.org/10.1016/S0268-005X(00)00029-1.

    Article  CAS  Google Scholar 

  32. Cui W, Mazza G, Biliaderis CG. Chemical structure, molecular size distributions, and rheological properties of flaxseed gum. J Agric Food Chem. 1994;42(9):1891–5. https://doi.org/10.1021/jf00045a012.

    Article  CAS  Google Scholar 

  33. Pader M. Dentifrice rheology. In: Laba D, editor. Rheological properties of cosmetic and toiletries. Marcel Dekker: New York; 1993. p. 247–73.

    Google Scholar 

  34. Gilbert L, Picard C, Savary G, Grisel M. Rheological and textural characterization of cosmetic emulsions containing natural and synthetic polymers: relationships between both data. Colloids Surf A Physicochem Eng Asp. 2013;421:150–63.

    Article  CAS  Google Scholar 

  35. Strzelczyk AB, Jach A, Kolodziejska J, Kołodziejczyk M, Godlewska M, Piechota-Urbanska M. The use of the Gelot emulsifier in diclofenac sodium semi-solid preparations. Current Issues in Pharmacy and Medical Sciences. 2017;30(1):43–9. https://doi.org/10.1515/cipms-2017-0010.

    Article  CAS  Google Scholar 

  36. Lee CH, Moturi V, Lee Y. Thixotropic property in pharmaceutical formulations. J Control Release. 2009;136:88–98.

    Article  CAS  PubMed  Google Scholar 

  37. Infante VHP, Calixto LS, Maia Campos PMBG. Cosmetics consumption behaviour among men and women and the importance in products indication and treatment adherence. Surg Cosmet Dermatol. 2016;8(2):134–41. https://doi.org/10.5935/scd1984-8773.201682817.

    Article  Google Scholar 

  38. Osterwalder U, Sohn M, Herzog B. Global state of sunscreens. Photodermatol Photo. 2014;25(2–3):62–80. https://doi.org/10.1111/phpp.12112.

    Article  Google Scholar 

Download references

Funding

This work was financially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (grant number 2018/16523-6) and Capes (financial code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. B. G. Maia Campos.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, V.T.P., Infante, V.H.P., Felippim, E.C. et al. Application of Factorial Design and Rheology to the Development of Photoprotective Formulations. AAPS PharmSciTech 21, 46 (2020). https://doi.org/10.1208/s12249-019-1569-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1569-7

KEY WORDS

Navigation