Skip to main content
Log in

Evaluation of Hydrogenated Soybean Phosphatidylcholine Matrices Prepared by Hot Melt Extrusion for Oral Controlled Delivery of Water-Soluble Drugs

  • Research Article
  • Theme: Lipid-Based Drug Delivery Strategies for Oral Drug Delivery
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aims of this study were to prepare hydrogenated soybean phosphatidylcholine (HSPC) matrices by hot melt extrusion and to evaluate resulting matrix potential to extend drug release in regard to drug loading and solubility for oral drug delivery of water-soluble drugs. The liquid crystalline nature of HSPC powder allowed its extrusion at 120°C, which was below its capillary melting point. Model drugs with a wide range of water solubilities (8, 20 and 240 mg/mL) and melting temperatures (160–270°C) were used. Extrudates with up to 70% drug loading were prepared at temperatures below the drugs’ melting points. The original crystalline state of the drugs remained unchanged through the process as confirmed by XRPD and hot-stage microscopy. The time to achieve 80% release (t80) from extrudates with 50% drug loading was 3, 8 and 18 h for diprophylline, caffeine and theophylline, respectively. The effect of matrix preparation method (extrusion vs. compression) on drug release was evaluated. For non-eroding formulations, the drug release retarding properties of the HSPC matrix were mostly not influenced by the preparation method. However, with increasing drug loadings, compressed tablets eroded significantly more than extruded matrices, resulting in 2 to 11 times faster drug release. There were no signs of erosion observed in extrudates with different drugs up to 70% loadings. The mechanical robustness of HSPC extrudates was attributed to the formation of a skin-core structure and was identified as the main reason for the drug release controlling potential of the HSPC matrices produced by hot melt extrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Grund J, Koerber M, Walther M, Bodmeier R. The effect of polymer properties on direct compression and drug release from water-insoluble controlled release matrix tablets. Int J Pharm. 2014;469(1):94–101.

    Article  CAS  PubMed  Google Scholar 

  2. Maderuelo C, Zarzuelo A, Lanao JM. Critical factors in the release of drugs from sustained release hydrophilic matrices. J Control Release. 2011;154(1):2–19.

    Article  CAS  PubMed  Google Scholar 

  3. Roberts M, Pulcini L, Mostafa S, Cuppok-Rosiaux Y, Marchaud D. Preparation and characterization of Compritol 888 ATO matrix tablets for the sustained release of diclofenac sodium. Pharm Dev Technol. 2015;20(4):507–12.

    Article  CAS  PubMed  Google Scholar 

  4. Kolbina M, Bodmeier R, Körber M. Saturated phosphatidylcholine as matrix former for oral extended release dosage forms. Eur J Pharm Sci. 2017;108:86–92.

    Article  CAS  PubMed  Google Scholar 

  5. van Hoogevest P. Review—an update on the use of oral phospholipid excipients. Eur J Pharm Sci. 2017;108:1–12.

    Article  PubMed  Google Scholar 

  6. Crowley MM, Schroeder B, Fredersdorf A, Obara S, Talarico M, Kucera S, et al. Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. Int J Pharm. 2004;269(2):509–22.

    Article  CAS  PubMed  Google Scholar 

  7. Grehan L, Killion JA, Devine DM, Kenny EK, Devery S, Higginbotham CL, et al. The development of hot melt extruded biocompatible controlled release drug delivery devices. Int J Polym Mater Polym Biomater. 2014;63(9):476–85.

    Article  CAS  Google Scholar 

  8. Kipping T, Rein H. Continuous production of controlled release dosage forms based on hot-melt extruded gum arabic: formulation development, in vitro characterization and evaluation of potential application fields. Int J Pharm. 2016;497(1–2):36–53.

    Article  CAS  PubMed  Google Scholar 

  9. Kallakunta VR, Tiwari R, Sarabu S, Bandari S, Repka MA. Effect of formulation and process variables on lipid based sustained release tablets via continuous twin screw granulation: a comparative study. Eur J Pharm Sci. 2018;121:126–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Siepmann F, Muschert S, Flament MP, Leterme P, Gayot A, Siepmann J. Controlled drug release from Gelucire-based matrix pellets: experiment and theory. Int J Pharm. 2006;317(2):136–43.

    Article  CAS  PubMed  Google Scholar 

  11. Güres S, Siepmann F, Siepmann J, Kleinebudde P. Drug release from extruded solid lipid matrices: theoretical predictions and independent experiments. Eur J Pharm Biopharm. 2012;80(1):122–9.

    Article  PubMed  Google Scholar 

  12. Sato H, Miyagawa Y, Okabe T, Miyajima M, Sunada H. Dissolution mechanism of diclofenac sodium from wax matrix granules. J Pharm Sci. 1997;86(8):929–34.

    Article  CAS  PubMed  Google Scholar 

  13. De Brabander C, Vervaet C, Fiermans L, Remon JP. Matrix mini-tablets based on starch/microcrystalline wax mixtures. Int J Pharm. 2000;199(2):195–203.

    Article  PubMed  Google Scholar 

  14. Liu J, Zhang F, McGinity JW. Properties of lipophilic matrix tablets containing phenylpropanolamine hydrochloride prepared by hot-melt extrusion. Eur J Pharm Biopharm. 2001;52(2):181–90.

    Article  CAS  PubMed  Google Scholar 

  15. Roblegg E, Jäger E, Hodzic A, Koscher G, Mohr S, Zimmer A, et al. Development of sustained-release lipophilic calcium stearate pellets via hot melt extrusion. Eur J Pharm Biopharm. 2011;79(3):635–45.

    Article  CAS  PubMed  Google Scholar 

  16. Laukamp EJ, Vynckier A-K, Voorspoels J, Thommes M, Breitkreutz J. Development of sustained and dual drug release co-extrusion formulations for individual dosing. Eur J Pharm Biopharm. 2015;89:357–64.

    Article  CAS  PubMed  Google Scholar 

  17. Hasa D, Perissutti B, Grassi M, Zacchigna M, Pagotto M, Lenaz D, et al. Melt extruded helical waxy matrices as a new sustained drug delivery system. Eur J Pharm Biopharm. 2011;79(3):592–600.

    Article  CAS  PubMed  Google Scholar 

  18. Vithani K, Cuppok Y, Mostafa S, Slipper IJ, Snowden MJ, Douroumis D. Diclofenac sodium sustained release hot melt extruded lipid matrices. Pharm Dev Technol. 2014;19(5):531–8.

    Article  CAS  PubMed  Google Scholar 

  19. Monteyne T, Adriaensens P, Brouckaert D, Remon J-P, Vervaet C, De Beer T. Stearic acid and high molecular weight PEO as matrix for the highly water soluble metoprolol tartrate in continuous twin-screw melt granulation. Int J. 2016;512(1):158–67.

    CAS  Google Scholar 

  20. Vaingankar P, Amin P. Continuous melt granulation to develop high drug loaded sustained release tablet of metformin HCl. Asian J Pharm Sci. 2017;12(1):37–50.

    Article  PubMed  Google Scholar 

  21. Nart V, Beringhs AO, França MT, de Espíndola B, Pezzini BR, Stulzer HK. Carnauba wax as a promising excipient in melt granulation targeting the preparation of mini-tablets for sustained release of highly soluble drugs. Mater Sci Eng C. 2017;70:250–7.

    Article  CAS  Google Scholar 

  22. Chapman D, Williams RM, Ladbrooke BD. Physical studies of phospholipids. VI. Thermotropic and lyotropic mesomorphism of some 1,2-diacyl-phosphatidylcholines (lecithins). Chem Phys Lipids. 1967;1(5):445–75.

    Article  CAS  Google Scholar 

  23. Ghalanbor Z, Körber M, Bodmeier R. Improved lysozyme stability and release properties of poly (lactide-co-glycolide) implants prepared by hot-melt extrusion. Pharm Res. 2010;27(2):371–9.

    Article  CAS  PubMed  Google Scholar 

  24. Shah VP, Tsong Y, Sathe P, Liu J. In vitro dissolution profile comparison—statistics and analysis of the similarity factor, f2. Pharm Res. 1998;15(6):889–96.

    Article  CAS  PubMed  Google Scholar 

  25. Koynova R, Caffrey M. Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta Rev Biomembr. 1998;1376(1):91–145.

    Article  CAS  Google Scholar 

  26. Chapman D. Liquid crystalline nature of phospholipids. In: Porter RS, Johnson JF, editors. Ordered Fluids and Liquid Crystals: American Chemical Society; 1967. p. 157–66.

  27. Williams RM, Chapman D. Phospholipids, liquids crystals and cell membranes. Prog Chem Fats Other Lipids. 1971;11:1–79.

    Article  Google Scholar 

  28. Byrne P, Chapman D. Liquid crystalline nature of phospholipids. Nature. 1964;202(4936):987–8.

    Article  Google Scholar 

  29. Ladbrooke BD, Chapman D. Thermal analysis of lipids, proteins and biological membranes a review and summary of some recent studies. Chem Phys Lipids. 1969;3(4):304–56.

    Article  CAS  PubMed  Google Scholar 

  30. Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  31. Bravo-Osuna I, Ferrero C, Jiménez-Castellanos MR. Influence of moisture content on the mechanical properties of methyl methacrylate–starch copolymers. Eur J Pharm Biopharm. 2007;66(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  32. Massing U, Bauer-Brandl A. Tablet containing hydrogenated phospholipids. EP1952805A1, 2008.

  33. Luzzati V, Gulik-Krzywicki T, Tardieu A. Polymorphism of lecithins. Nature. 1968;218(5146):1031–4.

    Article  CAS  PubMed  Google Scholar 

  34. Vergnaud JM. Controlled drug release of oral dosage forms. Boca Raton: CRC Press; 1993.

    Book  Google Scholar 

  35. Guse C, Koennings S, Kreye F, Siepmann F, Goepferich A, Siepmann J. Drug release from lipid-based implants: elucidation of the underlying mass transport mechanisms. Int J Pharm. 2006;314(2):137–44.

    Article  CAS  PubMed  Google Scholar 

  36. Siepmann J, Siepmann F. Mathematical modeling of drug release from lipid dosage forms. Int J Pharm. 2011;418(1):42–53.

    Article  CAS  PubMed  Google Scholar 

  37. Grund J, Körber M, Bodmeier R. Predictability of drug release from water-insoluble polymeric matrix tablets. Eur J Pharm Biopharm. 2013;85(3 Pt A):650–5.

    Article  CAS  PubMed  Google Scholar 

  38. Yang L, Fassihi R. Examination of drug solubility, polymer types, hydrodynamics and loading dose on drug release behavior from a triple-layer asymmetric configuration delivery system. Int J Pharm. 1997;155(2):219–29.

    Article  CAS  Google Scholar 

  39. Harland RS, Gazzaniga A, Sangalli ME, Colombo P, Peppas NA. Drug/polymer matrix swelling and dissolution. Pharm Res. 1988;05(8):488–94.

    Article  CAS  Google Scholar 

  40. Streubel A, Siepmann J, Dashevsky A, Bodmeier R. pH-independent release of a weakly basic drug from water-insoluble and -soluble matrix tablets. J Control Release. 2000;67(1):101–10.

    Article  CAS  PubMed  Google Scholar 

  41. Ide Y, Ophir Z. Orientation development in thermotropic liquid crystal polymers. Polym Eng Sci. 1983;23(5):261–5.

    Article  CAS  Google Scholar 

  42. Weiss RA, Huh W, Nicolais L. Novel reinforced polymers based on blends of polystyrene and a thermotropic liquid crystalline polymer. Polym Eng Sci. 1987;27(9):684–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Phospholipid Research Center (Heidelberg, Germany). The authors thank Eva Hepke (Technische Universität Berlin) for technical support with XRPD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Körber.

Additional information

Guest Editor: Sanyog Jain

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 3231 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolbina, M., Schulte, A., van Hoogevest, P. et al. Evaluation of Hydrogenated Soybean Phosphatidylcholine Matrices Prepared by Hot Melt Extrusion for Oral Controlled Delivery of Water-Soluble Drugs. AAPS PharmSciTech 20, 159 (2019). https://doi.org/10.1208/s12249-019-1366-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1366-3

KEY WORDS

Navigation