Skip to main content

Advertisement

Log in

Cocrystal of 5-Fluorouracil: Characterization and Evaluation of Biopharmaceutical Parameters

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

To prepare the cocrystals of 5-fluorouracil (5-FU) with GRAS status coformers via a cocrystallization technique with an aim to improve physicochemical properties as well as bioavailability for colon cancer, breast cancer, and prostate cancer. The mechanochemical method was used in the preparations of three crystals of 5-FU with gentisic acid (5-FUGA), 3,4-dihydroxybenzoic acid (5-FUBA), and 4-aminopyridine (5-FUPN). A thermoanalytical and spectroscopic technique was used for their characterization. Their biological evaluation was done in different cancer cell lines. The new solid pure crystal forms were characterized by DSC, FTIR, and PXRD. The crystal structure was determined from single crystal and PXRD that exposed the existence of the monoclinic and triclinic crystal system with P21/n and P-1 space groups. The dermatokinetic studies on the rat skin revealed two- to threefold improvement in relative bioavailability as compared to pure 5-FU. “MTT assay was performed by varying the concentrations of the drug from 1 to 50 μg mL−1. After 24 h, the cell viability dropped to 70.67%, 74.05%, and 76.37% in MCF-7, Hela, and Caco-2 cell lines when the concentration of 5-FU was 50 μg mL−1”, while it dropped dramatically in cocrystals 5-FUGA (22.06%, 24.63%, and 25.61%), 5-FUBA (31.22%, 29.46%, and 32.81%), and 5-FUPN (21.65%, 32.64%, and 21.46%). All the results indicated that 5-FU cocrystals possess better antitumor efficacy than free drug. Thus, cocrystallization expands the extent of the existing pre-formulation options ahead of pure API form to ameliorate the bioavailability and permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Longley DB, Harkin DP, Johnston PG. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3(5):330–8.

    Article  CAS  Google Scholar 

  2. Van Ruth S, Jansman FG, Sanders CJ. Total body topical 5-fluorouracil for extensive non-melanoma skin cancer. Pharm World Sci. 2006;28(3):159–62.

    Article  CAS  Google Scholar 

  3. Hussain A, Samad A, Ramzan M, Ahsan MN, Ur Rehman Z, Ahmad FJ. Elastic liposome-based gel for topical delivery of 5-fluorouracil: in vitro and in vivo investigation. Drug Deliv. 2016;23(4):1115–29.

    Article  CAS  Google Scholar 

  4. Glavas-Dodov M, Fredro-Kumbaradzi E, Goracinova K, Calis S, Simonoska M, Hincal AA. 5-Fluorouracil in topical liposome gels for anticancer treatment-formulation and evaluation. Acta Pharma. 2003;53(4):241–50.

    CAS  Google Scholar 

  5. Paolino D, Cosco D, Muzzalupo R, Trapasso E, Picci N, Fresta M. Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. Int J Pharm. 2008;353(1–2):233–42.

    Article  CAS  Google Scholar 

  6. Rahman Z, Kohli K, Khar RK, Ali M, Charoo NA, Shamsher AA. Characterization of 5-fluorouracil microspheres for colonic delivery. AAPS PharmSciTech. 2006;7(2):E47–53.

    Article  Google Scholar 

  7. Fu DJ, Jin Y, Xie MQ, Ye YJ, Qin DD, Lou KY, et al. Preparation and characterization of mPEG grafted chitosan micelles as 5-fluorouracil carriers for effective anti-tumour activity. Chin Chem Lett. 2014;25(11):1435–40.

    Article  CAS  Google Scholar 

  8. Patil H, Tiwari RV, Repka MA. Hot-melt extrusion: from theory to application in a pharmaceutical formulation. AAPS PharmSciTech. 2016;17(1):20–42.

    Article  CAS  Google Scholar 

  9. Bollag NA. Pharmaceutical cocrystals: walking the talk. Chem Commun. 2016;52(54):8342–60.

    Article  Google Scholar 

  10. Li AY, Xu LL, Chen JM, Lu TB. Solubility and dissolution rate enhancement of triamterene by a cocrystallization method. Cryst Growth Des. 2015;15(8):3785–91.

    Article  CAS  Google Scholar 

  11. Sanphui P, Devi VK, Clara D, Malviya N, Ganguly S, Desiraju GR. Cocrystals of hydrochlorothiazide: solubility and diffusion/permeability enhancements through drug–coformer interactions. Mol Pharm. 2015;12(5):1615–22.

    Article  CAS  Google Scholar 

  12. Dai XL, Li S, Chen JM, Lu TB. Improving the membrane permeability of 5-fluorouracil via cocrystallization. Cryst Growth Des. 2016;16(8):4430–8.

    Article  CAS  Google Scholar 

  13. Semaming Y, Pannengpetch P, Chattipakorn SC, Chattipakorn N. Pharmacological properties of protocatechuic acid and its potential roles as complementary medicine. Evid Based Complement Alternat Med. 2015;2015:1–11.

    Article  Google Scholar 

  14. Landberg R, Sun Q, Rimm EB, Cassidy A, Scalbert A, Mantzoros CS, et al. Selected dietary flavonoids are associated with markers of inflammation and endothelial dysfunction in US women. J Nutr. 2011;141(4):618–25.

    Article  CAS  Google Scholar 

  15. Jensen HB, Ravnborg M, Dalgas U, Stenager E. 4-Aminopyridine for symptomatic treatment of multiple sclerosis: a systematic review. Ther Adv Neurol Disord. 2014;7(2):97–113.

    Article  CAS  Google Scholar 

  16. Silva CCP, Cristiane CM, Souza MS, Luan FD, Renato LC, Ellena J. 5-Fluorocytosine/5-fluorouracil drug-drug cocrystal: a new development route based on mechanochemical synthesis. J Pharm Innov. https://doi.org/10.1007/s12247-018-9333-1.

    Article  Google Scholar 

  17. Emami S, Adibkia K, Barzegar-Jalali M, Siahi-Shadbad M. Piroxicam cocrystals with phenolic coformers: preparation, characterization, and dissolution properties. Pharm Dev Technol. 2019;24(2):199–210. https://doi.org/10.1080/10837450.2018.1455210.

    Article  CAS  PubMed  Google Scholar 

  18. Renu C, Anupam S, Dharamvir SJ, Venugopalan P. Preparation and solid-state characterization of three novel multicomponent solid forms of oxcarbazepine: improvement in solubility through saccharin cocrystal. Cryst Growth Des. 2012;12(8):4211–24.

    Article  Google Scholar 

  19. Caiqin Y, Wei G, Yulong L, Qianqian L, Jiao W, Jing W, et al. Experimental and DFT simulation study of a novel felodipine cocrystal: characterization, dissolving properties and thermal decomposition kinetics. J Pharm Biomed Anal. 2018;154(30):198–206.

    Google Scholar 

  20. Ziyaur R, Cyrus A, Ahmed SZ, Saeed RK, Mansoor AK. Physico-mechanical and stability evaluation of carbamazepine cocrystal with nicotinamide. AAPS PharmSciTech. 2011;12(2):693–704.

    Article  Google Scholar 

  21. Issa N, Karamertzanis PG, Welch GW, Price SL. Can the formation of pharmaceutical cocrystals be computationally predicted? I. Comparison of lattice energies. Cryst Growth Des. 2008;9(1):442–53.

    Article  Google Scholar 

  22. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, et al. Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Crystallogr. 2008;41(2):466–70.

    Article  CAS  Google Scholar 

  23. Panchagnula R, Bokalial R, Sharma P, Khandavilli S. Transdermal delivery of naloxone: skin permeation, pharmacokinetic, irritancy and stability studies. Int J Pharm. 2005;293(1–2):213–23.

    Article  CAS  Google Scholar 

  24. Garg NK, Tyagi RK, Singh B, Sharma G, Nirbhavane P, Kushwah V, et al. Nanostructured lipid carrier mediates effective delivery of methotrexate to induce apoptosis of rheumatoid arthritis via NF-κB and FOXO1. Int J Pharm. 2016;499(1–2):301–20.

    Article  CAS  Google Scholar 

  25. Li X, Xu Y, Chen G, Wei P, Ping Q. PLGA nanoparticles for the oral delivery of 5-fluorouracil using high-pressure homogenization-emulsification as the preparation method and in vitro/in vivo studies. Drug Dev Ind Pharm. 2008;34(1):107–15.

    Article  CAS  Google Scholar 

  26. Pradip N, Gajanand S, Bhupinder S, Gopal KK, Vijay GG, Patil AB, et al. Preclinical explorative assessment of celecoxib-based biocompatible lipidic nanocarriers for the management of CFA-induced rheumatoid arthritis in Wistar rats. AAPS PharmSciTech. 2018;19(7):3187–98. https://doi.org/10.1208/s12249-018-1148-3.

    Article  CAS  Google Scholar 

  27. Işik SÖ, Hatice YK, Gülten K, Sumru S, Tamer G, Gökhan E. Transdermal delivery of diclofenac sodium through rat skin from various formulations. AAPS PharmSciTech. 2006;7(4):E39–45.

    Article  Google Scholar 

  28. David WO, Jasmine M. Skin penetration and permeation properties of Transcutol®—neat or diluted mixtures. AAPS PharmSciTech. 2018;19(8):3512–33.

    Article  Google Scholar 

  29. Faiyaz S, Sanjula B, Alka A, Javed A, Mohammed A, Sheikh S. Nanoemulsions as vehicles for transdermal delivery of aceclofenac. AAPS PharmSciTech. 2007;8(4):E1–9.

    Article  Google Scholar 

  30. Dejan KB, Rodger FH, Xiaochun L, Richard WD, Leonard RMG, Geoff GZZ. Cocrystals of caffeine and hydroxybenzoic acids composed of multiple supramolecular heterosynthons: screening via solution-mediated phase transformation and structural characterization. Cryst Growth Des. 2009;9(4):1932–43.

    Article  Google Scholar 

  31. Wang JR, Yu X, Zhou C, Lin Y, Chen C, Pan G, et al. Improving the dissolution and bioavailability of 6-mercaptopurine via co-crystallization with isonicotinamide. Bioorg Med Chem Lett. 2015;25(5):1036–9.

    Article  CAS  Google Scholar 

  32. Kunal C, Maninder K, Yashika B, Renu C, Sadhika K, Sanjay M, et al. Cocrystals of hesperetin: structural, pharmacokinetic, and pharmacodynamic evaluation. Cryst Growth Des. 2017;17(5):2386–405.

    Article  Google Scholar 

  33. Cristina DD, Margherita L, Roberto F, Carla I, Marina I, Gaetano M, et al. Alpha and beta-cyclodextrin inclusion complexes with 5-fluorouracil: characterization and cytotoxic activity evaluation. Molecules. 2016;21:1644–58.

    Article  Google Scholar 

  34. Chen H, Chang X, Weng T, Zhao X, Gao Z, Yang Y, et al. A study of microemulsion systems for transdermal delivery of triptolide. J Control Release. 2004;98(3):427–36.

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from the University Grants Commission (UGC), New Delhi, India (vide letter, number F1-17.1/2013-14/RGNF-2013-14-SC-UTT-55580), to Manoj Kumar Gautam as a UGC-RGNF fellow for accomplishing this work, and financial assistance from the CSIR (No. 02(0279)/16/EMR-II), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Chadha.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, M.K., Besan, M., Pandit, D. et al. Cocrystal of 5-Fluorouracil: Characterization and Evaluation of Biopharmaceutical Parameters. AAPS PharmSciTech 20, 149 (2019). https://doi.org/10.1208/s12249-019-1360-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1360-9

KEY WORDS

Navigation