Skip to main content

Advertisement

Log in

Investigation of the Compatibility of the Skin PAMPA Model with Topical Formulation and Acceptor Media Additives Using Different Assay Setups

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The Skin Parallel Artificial Membrane Permeability Assay (PAMPA) is a 96-well plate–based skin model with an artificial membrane containing free fatty acid, cholesterol, and synthetic ceramide analogs to mimic the stratum corneum (SC) barrier. The current study evaluates the compatibility of lipophilic solvents/penetration enhancer, topical emulsions containing different emulsifier systems, and organic acceptor media additives with the artificial membrane of the assay. Additionally, different assay setups (standard setup: donor in bottom plate versus modified setup: donor in top plate) were compared. Methylparaben (MP), ethylparaben (EP), and propylparaben (PP) were used as model permeants and internal standards for proper assay execution. The permeation order of the parabens (MP > EP > PP) remained the same with different lipophilic solvents, and the ranking of lipophilic solvents was comparable under standard and modified conditions (isopropyl myristate, IPM > dimethyl isosorbide, DMI ≥ propylene glycol, PG > diisopropyl adipate, DIPA). Pre-incubation of the Skin PAMPA plates with IPM, DIPA, and DMI, as well as with formulations that contain non-ionic emulsifiers, and acceptor solutions containing DMSO or EtOH (≤ 50%) for 4 h did not increase the percentage of permeated parabens in the main experiment, suggesting that those compounds do not make the artificial membrane more permeable. High-resolution mass spectrometry confirmed that acceptor solutions with ≤ 50% DMSO or EtOH do not extract stearic acid, cholesterol, and certramides at standard assay conditions. Hence, if certain constraints are considered, the Skin PAMPA model can be used as a pre-screening tool for topical formulation selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

API:

Active pharmaceutical ingredient

DIPA:

Diisopropyl adipate

DMI:

Dimethyl isosorbide

DMSO:

Dimethyl sulfoxide

EtOH:

Ethanol

IPM:

Isopropyl myristate

MP, EP & PP:

Methyl-, ethyl- & propylparaben respectively

PAMPA:

Parallel Artificial Membrane Permeability Assay

PG:

Propylene glycol

SC:

Stratum corneum

UPLC:

Ultra-performance liquid chromatography

References

  1. Franz TJ. Percutaneous absorption on the relevance of in vitro data. J Invest Dermatol. 1975;64(3):190–5.

    Article  CAS  Google Scholar 

  2. Siewert M, Dressman J, Brown CK, Shah VP. FIP/AAPS guidelines to dissolution/in vitro release testing of novel/special dosage forms. AAPS PharmSciTech. 2003;4(1):E7. https://doi.org/10.1208/pt040107.

    Article  PubMed  Google Scholar 

  3. Mujica Ascencio S, Choe C, Meinke MC, Muller RH, Maksimov GV, Wigger-Alberti W, et al. Confocal Raman microscopy and multivariate statistical analysis for determination of different penetration abilities of caffeine and propylene glycol applied simultaneously in a mixture on porcine skin ex vivo. Eur J Pharm Biopharm. 2016;104:51–8. https://doi.org/10.1016/j.ejpb.2016.04.018.

    Article  CAS  PubMed  Google Scholar 

  4. Eberlin LS, Mulcahy JV, Tzabazis A, Zhang J, Liu H, Logan MM, et al. Visualizing dermal permeation of sodium channel modulators by mass spectrometric imaging. JACS. 2014;136(17):6401–5. https://doi.org/10.1021/ja501635u.

    Article  CAS  Google Scholar 

  5. Herbig ME, Houdek P, Gorissen S, Zorn-Kruppa M, Wladykowski E, Volksdorf T, et al. A custom tailored model to investigate skin penetration in porcine skin and its comparison with human skin. Eur J Pharm Biopharm. 2015;95(Pt A):99–109. https://doi.org/10.1016/j.ejpb.2015.03.030.

    Article  CAS  PubMed  Google Scholar 

  6. Ng SF, Rouse JJ, Sanderson FD, Meidan V, Eccleston GM. Validation of a static Franz diffusion cell system for in vitro permeation studies. AAPS PharmSciTech. 2010;11(3):1432–41. https://doi.org/10.1208/s12249-010-9522-9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sinko B, Garrigues TM, Balogh GT, Nagy ZK, Tsinman O, Avdeef A, et al. Skin-PAMPA: a new method for fast prediction of skin penetration. Eur J Pharm Sci. 2012;45(5):698–707. https://doi.org/10.1016/j.ejps.2012.01.011.

    Article  CAS  PubMed  Google Scholar 

  8. Kansy M, Senner F, Gubernator K. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem. 1998;41(7):1007–10. https://doi.org/10.1021/jm970530e.

    Article  CAS  PubMed  Google Scholar 

  9. Avdeef A. The rise of PAMPA. Expert Opin Drug Metab Toxicol. 2005;1(2):325–42. https://doi.org/10.1517/17425255.1.2.325.

    Article  CAS  PubMed  Google Scholar 

  10. Ottaviani G, Martel S, Carrupt PA. Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability. J Med Chem. 2006;49(13):3948–54. https://doi.org/10.1021/jm060230+.

  11. Sinko B, Kokosi J, Avdeef A, Takacs-Novak K. A PAMPA study of the permeability-enhancing effect of new ceramide analogues. Chem Biodivers. 2009;6(11):1867–74. https://doi.org/10.1002/cbdv.200900149.

    Article  CAS  PubMed  Google Scholar 

  12. Balazs B, Vizseralek G, Berko S, Budai-Szucs M, Kelemen A, Sinko B, et al. Investigation of the efficacy of transdermal penetration enhancers through the use of human skin and a skin mimic artificial membrane. J Pharm Sci. 2016;105(3):1134–40. https://doi.org/10.1016/S0022-3549(15)00172-0.

    Article  CAS  PubMed  Google Scholar 

  13. Vizseralek G, Berko S, Toth G, Balogh R, Budai-Szucs M, Csanyi E, et al. Permeability test for transdermal and local therapeutic patches using Skin PAMPA method. Eur J Pharm Sci. 2015;76:165–72. https://doi.org/10.1016/j.ejps.2015.05.004.

    Article  CAS  PubMed  Google Scholar 

  14. Clough M, Richardson N, Romanski F, Langley N, Tsinman K, Tsinman O, editors. Assessment of transdermal penetration enhancement by topical pharmaceutical excipients using Skin PAMPA Method (T2267). AAPS Annual Meeting and Exposition 2013; San Antonio.

  15. Luo L, Patel A, Sinko B, Bell M, Wibawa J, Hadgraft J, et al. A comparative study of the in vitro permeation of ibuprofen in mammalian skin, the PAMPA model and silicone membrane. Int J Pharm. 2016;505(1–2):14–9. https://doi.org/10.1016/j.ijpharm.2016.03.043.

  16. van Smeden J, Hoppel L, van der Heijden R, Hankemeier T, Vreeken RJ, Bouwstra JA. LC/MS analysis of stratum corneum lipids: ceramide profiling and discovery. J Lipid Res. 2011;52(6):1211–21. https://doi.org/10.1194/jlr.M014456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Prausnitz MR, Elias PM, Franz TJ, Schmuth M, Tsai J-C, Menon GK, et al. Skin barrier and transdermal drug delivery. In: Bolognia J, Jorizzo J, Schaffer J, editors. Dermatology, 3 ed: Elsevier Health Sciences; 2012.

  18. Pedersen S, Marra F, Nicoli S, Santi P. In vitro skin permeation and retention of parabens from cosmetic formulations. Int J Cosmetic Sci. 2007;29(5):361–7. https://doi.org/10.1111/j.1468-2494.2007.00388.x.

    Article  CAS  Google Scholar 

  19. Lane ME. Skin penetration enhancers. Int J Pharm. 2013;447(1–2):12–21. https://doi.org/10.1016/j.ijpharm.2013.02.040.

    Article  CAS  PubMed  Google Scholar 

  20. Brinkmann I, Muller-Goymann CC. Role of isopropyl myristate, isopropyl alcohol and a combination of both in hydrocortisone permeation across the human stratum corneum. Skin Pharmacol Appl Ski Physiol. 2003;16(6):393–404.

    Article  CAS  Google Scholar 

  21. Takahashi K, Sakano H, Numata N, Kuroda S, Mizuno N. Effect of fatty acid diesters on permeation of anti-inflammatory drugs through rat skin. Drug Dev Ind Pharm. 2002;28(19):1285–94.

    Article  CAS  Google Scholar 

  22. Remitz A, Reitamo S, Erkko P, Granlund H, Lauerma AI. Tacrolimus ointment improves psoriasis in a microplaque assay. Br J Dermatol. 1999;141(1):103–7.

    Article  CAS  Google Scholar 

  23. Barry BW, Southwell D, Woodford R. Optimization of bioavailability of topical steroids: penetration enhancers under occlusion. J Investig Dermatol. 1984;82(1):49–52.

    Article  CAS  Google Scholar 

  24. Russo C, Brickelbank N, Duckett C, Mellor S, Rumbelow S, Clench MR. Quantitative investigation of terbinafine hydrochloride absorption into a living skin equivalent model by MALDI-MSI. Anal Chem. 2018;90(16):10031–8.

    Article  CAS  Google Scholar 

  25. Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2004;56(5):603–18.

    Article  CAS  Google Scholar 

  26. Ghafourian T, Nokhodchi A, Kaialy W. Surfactants as penetration enhancers for dermal and transdermal drug delivery. In: Dragicevic N, Maibach HI, editors. Percutaneous penetration enhancers chemical methods in penetration enhancement: modification of the stratum corneum. Berlin: Springer Berlin Heidelberg; 2015. p. 207–30.

    Chapter  Google Scholar 

  27. Som I, Bhatia K, Yasir M. Status of surfactants as penetration enhancers in transdermal drug delivery. J Pharm Bioallied Sci. 2012;4(1):2–9. https://doi.org/10.4103/0975-7406.92724.

Download references

Acknowledgements

The authors thank Elvira Balaguer, Almirall SA, Sant Feliu, Spain, for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie Köllmer.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köllmer, M., Mossahebi, P., Sacharow, E. et al. Investigation of the Compatibility of the Skin PAMPA Model with Topical Formulation and Acceptor Media Additives Using Different Assay Setups. AAPS PharmSciTech 20, 89 (2019). https://doi.org/10.1208/s12249-019-1305-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1305-3

KEY WORDS

Navigation