Skip to main content
Log in

Preparation of Sustained Release Tablet with Minimized Usage of Glyceryl Behenate Using Post-Heating Method

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this study was to prepare sustained release (SR) matrix tablets using a direct compression incorporated with a post-heating process. Allopurinol was selected due to the water-soluble property and Compritol 888 ATO® (also known as glyceryl behenate) was used as an SR matrix-forming agent. The API, SR material, microcrystalline cellulose, and magnesium stearate (lubricant) were mixed and prepared into a tablet by a direct compression method. The compressed tablets were stored in a dry oven at four temperatures (60, 70, 80, and 90°C) and for three time periods (15, 30, 45 min). The DSC and PXRD data indicated that the crystallinity of the API was not altered by the post-heating method. However, SEM images demonstrated that Compritol 888 ATO® was melted by the post-heating method, and that the melted Compritol 888 ATO® could form a strong matrix. This strong matrix led to the significant sustained release behavior of hydrophilic APIs. As little as 3 mg of Compritol 888 ATO® (0.65% of total tablet weight), when heated at 80°C for 15 min, showed sustained release over 10 h. The post-heating method exerted a significant influence on lipid-based matrix tablets and allowed a reduction in the amount of material required for a water-soluble drug. This will also provide a valuable insight into lipid-based SR tablets and will allow their application to higher quality products and easier processing procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Colombo P, Bettini R, Santi P, Peppas NA. Swellable matrices for controlled drug delivery: gel-layer behaviour, mechanisms and optimal performance. Pharm Sci Technolo Today. 2000;3:198–204.

    Article  CAS  Google Scholar 

  2. Jiménez-Martínez I, Quirino-Barreda T, Villafuerte-Robles L. Sustained delivery of captopril from floating matrix tablets. Int J Pharm. 2008;362:37–43.

    Article  CAS  PubMed  Google Scholar 

  3. Viridén A, Abrahmsén-Alami S, Wittgren B, Larsson A. Release of theophylline and carbamazepine from matrix tablets—consequences of HPMC chemical heterogeneity. Eur J Pharm Biopharm. 2011;78:470–9.

    Article  CAS  PubMed  Google Scholar 

  4. Li L, Wang L, Shao Y, Tian Y, Li C, Li Y, et al. Elucidation of release characteristics of highly soluble drug trimetazidine hydrochloride from chitosan–carrageenan matrix tablets. J Pharm Sci. 2013;102:2644–54.

    Article  CAS  PubMed  Google Scholar 

  5. Peppas N, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50:27–46.

    Article  CAS  PubMed  Google Scholar 

  6. Barthelemy P, Laforet J, Farah N, Joachim J. Compritol® 888 ATO: an innovative hot-melt coating agent for prolonged-release drug formulations. Eur J Pharm Biopharm. 1999;47:87–90.

    Article  CAS  PubMed  Google Scholar 

  7. Jeong KH, Woo HS, Kim CJ, Lee KH, Jeon JY, Lee SY, et al. Formulation of a modified-release pregabalin tablet using hot-melt coating with glyceryl behenate. Int J Pharm. 2015;495:1–8.

    Article  CAS  PubMed  Google Scholar 

  8. Rosiaux Y, Jannin V, Hughes S, Marchaud D. Solid lipid excipients—matrix agents for sustained drug delivery. J Control Release. 2014;188:18–30.

    Article  CAS  PubMed  Google Scholar 

  9. Saraiya D, Bolton S. The use of Precirol® to prepare sustained release tablets of theophylline and quinidine gluconate. Drug Dev Ind Pharm. 1990;16:1963–9.

    Article  CAS  Google Scholar 

  10. Özyazıcı M, Gökçe EH, Ertan G. Release and diffusional modeling of metronidazole lipid matrices. Eur J Pharm Biopharm. 2006;63:331–9.

    Article  CAS  PubMed  Google Scholar 

  11. Anbalagan P, Liew CV, Heng PWS. Role of dwell on compact deformation during tableting: an overview. J Pharm Investig. 2017;47:173–81.

    Article  CAS  Google Scholar 

  12. Li F-Q, Hu J-H, Deng J-X, Su H, Xu S, Liu J-Y. In vitro controlled release of sodium ferulate from Compritol 888 ATO-based matrix tablets. Int J Pharm. 2006;324:152–7.

    Article  CAS  PubMed  Google Scholar 

  13. Schroeder H, Dakkuri A, Deluca P. Sustained release from inert wax matrixes I: drug–wax combinations. J Pharm Sci. 1978;67:350–3.

    Article  CAS  PubMed  Google Scholar 

  14. Smith, A., Datta, S.P., Smith, G.H., Campbell, P.N., Bentley, R., McKenzie, H. Oxford dictionary of biochemistry and molecular biology, 2nd ed. Oxford: Oxford University Press; 2000.

  15. Weiner, A. Lipid excipient for nasal delivery and topical application. US5200393A; 1993.

  16. Thapa RK, Choi H-G, Kim JO, Yong CS. Analysis and optimization of drug solubility to improve pharmacokinetics. J Pharm Investig. 2017;47:95–110.

    Article  CAS  Google Scholar 

  17. Keen JM, Foley CJ, Hughey JR, Bennett RC, Jannin V, Rosiaux Y, et al. Continuous twin screw melt granulation of glyceryl behenate: development of controlled release tramadol hydrochloride tablets for improved safety. Int J Pharm. 2015;487:72–80.

    Article  CAS  PubMed  Google Scholar 

  18. Hwang I, Kang C-Y, Park J-B. Advances in hot-melt extrusion technology toward pharmaceutical objectives. J Pharm Investig. 2017;47:123–32.

    Article  CAS  Google Scholar 

  19. Obaidat AA, Obaidat RM. Controlled release of tramadol hydrochloride from matrices prepared using glyceryl behenate. Eur J Pharm Biopharm. 2001;52:231–5.

    Article  CAS  PubMed  Google Scholar 

  20. Lee Y, Kim K, Kim M, Choi DH, Jeong SH. Orally disintegrating films focusing on formulation, manufacturing process, and characterization. J Pharm Investig. 2017;47:183–01.

    Article  CAS  Google Scholar 

  21. Rao M, Ranpise A, Borate S, Thanki K. Mechanistic evaluation of the effect of sintering on Compritol® 888 ATO matrices. AAPS PharmSciTech. 2009;10:355–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization model list of essential medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm. 2004;58:265–78.

    Article  PubMed  Google Scholar 

  23. Food and Drug Administration, Guidance for industry: waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. Food and Drug Administration, Rockville, MD. 2000.

  24. Emmerson BT. The management of gout. N Engl J Med. 1996;334:445–51.

    Article  CAS  PubMed  Google Scholar 

  25. Roberts M, Pulcini L, Mostafa S, Cuppok-Rosiaux Y, Marchaud D. Preparation and characterization of Compritol 888 ATO matrix tablets for the sustained release of diclofenac sodium. Pharm Dev Technol. 2015;20(4):507–12.

    Article  CAS  PubMed  Google Scholar 

  26. Brubach J, Jannin V, Mahler B, Bourgaux C, Lessieur P, Roy P, et al. Structural and thermal characterization of glyceryl behenate by X-ray diffraction coupled to differential calorimetry and infrared spectroscopy. Int J Pharm. 2007;336:248–56.

    Article  CAS  PubMed  Google Scholar 

  27. Krajacic A, Tucker IG. Matrix formation in sustained release tablets: possible mechanism of dose dumping. Int J Pharm. 2003;251:67–78.

    Article  CAS  PubMed  Google Scholar 

  28. Omelczuk MO, McGinity JW. The influence of thermal treatment on the physical–mechanical and dissolution properties of tablets containing poly (DL-lactic acid). Pharm Res. 1993;10:542–8.

    Article  CAS  PubMed  Google Scholar 

  29. Patere SN, Desai NS, Jain AS, Kadam PP, Thatte UM, Gogtay N, et al. Compritol® 888 ATO a lipid excipient for sustained release of highly water soluble active: formulation, scale-up and IVIVC study. Curr Drug Deliv. 2013;10:548–56.

    Article  CAS  PubMed  Google Scholar 

  30. El-Wahed MA, Refat M, El-Megharbel S. Metal complexes of antiuralethic drug: synthesis, spectroscopic characterization and thermal study on allopurinol complexes. J Mol Struct. 2008;888:416–29.

    Article  CAS  Google Scholar 

  31. Kaur A, Goindi S, Katare OP. Thermal analysis and quantitative characterization of compatibility between diflunisal and lipid excipients as raw materials for development of solid lipid nanoparticles. Thermochim Acta. 2016;643:23–32.

    Article  CAS  Google Scholar 

  32. Obaidat, R., Alnaief, M., and Mashaqbeh, H. Investigation of carrageenan aerogel microparticles as a potential drug carrier. AAPS PharmSciTech 2018;19(1):36–47.

    Article  CAS  PubMed  Google Scholar 

  33. Patil A, Bjide S, Bookwala M, Soneta B, Shankar V, Almotairy A, et al. Stability of organoleptic agents in pharmaceuticals and cosmetics. AAPS PharmSciTech. 2018;19(1):36–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Sahmyook University Research Fund in 2016 (no. RI22016007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Bom Park.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, C., Lee, JH., Kim, DW. et al. Preparation of Sustained Release Tablet with Minimized Usage of Glyceryl Behenate Using Post-Heating Method. AAPS PharmSciTech 19, 3067–3075 (2018). https://doi.org/10.1208/s12249-018-1128-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1128-7

KEY WORDS

Navigation