Skip to main content
Log in

Optimization of Curcuma Oil/Quinine-Loaded Nanocapsules for Malaria Treatment

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Quinine, a treatment used in chloroquine-resistant falciparum malaria, was loaded into poly(ɛ-caprolactone) or Eudragit® RS100 nanocapsules using Curcuma oil as the oil-based core. Until now, the effect of cationic nanocapsules on malaria has not been reported. A 24 factorial design was adopted using, as independent variables, the concentration of Curcuma oil, presence of quinine, type of polymer, and aqueous surfactant. Diameter, zeta potential, and pH were the responses studied. The formulations were also evaluated for drug content, encapsulation efficiency, photostability, and antimalarial activity against Plasmodium berghei-infected mice. The type of polymer influenced all of the responses studied. Quinine-loaded Eudragit® RS100 (F13) and PCL nanocapsules (F9), both with polysorbate 80 coating, showed nanometric particle size, positive zeta potential, neutral pH, high drug content, and quinine photoprotection ability; thus, these nanocapsules were selected for in vivo tests. Both formulations showed lower levels of parasitemia from the beginning of the experiment (5.78 ± 3.60 and 4.76 ± 3.46% for F9 and F13, respectively) and highest survival mean time (15.3 ± 2.0 and 14.9 ± 5.6 days for F9 and F13, respectively). F9 and F13 showed significant survival curve compared to saline, thus demonstrating that nanoencapsulation improved bioefficacy of QN and co-encapsulated curcuminoids, regardless of the surface charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Watts KR, Tenney K, Crews P. The structural diversity and promise of antiparasitic marine invertebrate-derived small molecules. Curr Opin Biotechnol. 2010;21(6):808–18. doi:10.1016/j.copbio.2010.09.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barber BE, Grigg MJ, William T, Yeo TW, Anstey NM. The treatment of Plasmodium knowlesi malaria. Trends Parasitol. 2016; doi:10.1016/j.pt.2016.09.002.

  3. WHO. 10 facts on malaria. http://www.who.int/features/factfiles/malaria/en/ (2014). [cited 2015 maio].

  4. Michels E. The 1971 presidential address. Phys Ther. 1971;51(11):1183–90.

    Article  CAS  PubMed  Google Scholar 

  5. Callaway E, Cyranoski D. Anti-parasite drugs sweep Nobel prize in medicine 2015. Nature. 2015;526(7572):174–5. doi:10.1038/nature.2015.18507.

    Article  CAS  PubMed  Google Scholar 

  6. Mace KE, Arguin PM. Malaria surveillance—United States, 2014. MMWR Surveill Summ. 2017;66(12):1–24. doi:10.15585/mmwr.ss6612a1.

    Article  PubMed  Google Scholar 

  7. Nguetse CN, Adegnika AA, Agbenyega T, Ogutu BR, Krishna S, Kremsner PG, et al. Molecular markers of anti-malarial drug resistance in Central, West and East African children with severe malaria. Malar J. 2017;16(1):217. doi:10.1186/s12936-017-1868-y.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dias S, Wickramarachchi T, Sahabandu I, Escalante AA, Udagama PV. Population genetic structure of the Plasmodium vivax circumsporozoite protein (Pvcsp) in Sri Lanka. Gene. 2013;518(2):381–7. doi:10.1016/j.gene.2013.01.003.

    Article  CAS  PubMed  Google Scholar 

  9. Rolling T, Wichmann D, Schmiedel S, Burchard GD, Kluge S, Cramer JP. Artesunate versus quinine in the treatment of severe imported malaria: comparative analysis of adverse events focussing on delayed haemolysis. Malar J. 2013;12:241. doi:10.1186/1475-2875-12-241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75(3):311–35. doi:10.1021/np200906s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang SF, Wu MY, Cai CZ, Li M, Lu JH. Autophagy modulators from traditional Chinese medicine: mechanisms and therapeutic potentials for cancer and neurodegenerative diseases. J Ethnopharmacol. 2016; doi:10.1016/j.jep.2016.10.069.

  12. Singh DB, Dwivedi S. Structural insight into binding mode of inhibitor with SAHH of Plasmodium and human: interaction of curcumin with anti-malarial drug targets. J Chem Biol. 2016;9(4):107–20. doi:10.1007/s12154-016-0155-7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Klinger NV, Mittal S. Therapeutic potential of curcumin for the treatment of brain tumors. Oxidative Med Cell Longev. 2016;2016:9324085. doi:10.1155/2016/9324085.

    Article  Google Scholar 

  14. Cui L, Miao J. Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: inhibition of histone acetylation and generation of reactive oxygen species. Antimicrob Agents Chemother. 2007;51(2):488–94. doi:10.1128/AAC.01238-06.

    Article  CAS  PubMed  Google Scholar 

  15. Dende C, Meena J, Nagarajan P, Panda AK, Rangarajan PN, Padmanaban G. Simultaneously targeting inflammatory response and parasite sequestration in brain to treat experimental cerebral malaria. Sci Rep. 2015;5:12671. doi:10.1038/srep12671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jain K, Sood S, Gowthamarajan K. Modulation of cerebral malaria by curcumin as an adjunctive therapy. Braz J Infect Dis. 2013;17(5):579–91. doi:10.1016/j.bjid.2013.03.004.

    Article  PubMed  Google Scholar 

  17. Vathsala PG, Dende C, Nagaraj VA, Bhattacharya D, Das G, Rangarajan PN, et al. Curcumin-arteether combination therapy of Plasmodium berghei-infected mice prevents recrudescence through immunomodulation. PLoS One. 2012;7(1):e29442. doi:10.1371/journal.pone.0029442.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Araujo CC, Leon LL. Biological activities of Curcuma longa L. Mem Inst Oswaldo Cruz. 2001;96(5):723–8.

    Article  CAS  PubMed  Google Scholar 

  19. Neto Z, Machado M, Lindeza A, do Rosario V, Gazarini ML, Lopes D. Treatment of Plasmodium chabaudi parasites with curcumin in combination with antimalarial drugs: drug interactions and implications on the ubiquitin/proteasome system. J Parasitol Res. 2013;2013:429736. doi:10.1155/2013/429736.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tomren MA, Masson M, Loftsson T, Tonnesen HH. Studies on curcumin and curcuminoids XXXI. Symmetric and asymmetric curcuminoids: stability, activity and complexation with cyclodextrin. Int J Pharm. 2007;338(1–2):27–34. doi:10.1016/j.ijpharm.2007.01.013.

    Article  CAS  PubMed  Google Scholar 

  21. Ghalandarlaki N, Alizadeh AM, Ashkani-Esfahani S. Nanotechnology-applied curcumin for different diseases therapy. Biomed Res Int. 2014;2014:394264. doi:10.1155/2014/394264.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vieira SM, Michels LR, Roversi K, Metz VG, Moraes BK, Piegas EM, et al. A surface modification of clozapine-loaded nanocapsules improves their efficacy: a study of formulation development and biological assessment. Colloids Surf B Biointerfaces. 2016;145:748–56. doi:10.1016/j.colsurfb.2016.05.065.

    Article  CAS  PubMed  Google Scholar 

  23. Leite EA, Grabe-Guimaraes A, Guimaraes HN, Machado-Coelho GL, Barratt G, Mosqueira VC. Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. Life Sci. 2007;80(14):1327–34. doi:10.1016/j.lfs.2006.12.019.

    Article  CAS  PubMed  Google Scholar 

  24. Mosqueira VC, Legrand P, Pinto-Alphandary H, Puisieux F, Barratt G. Poly(D,L-lactide) nanocapsules prepared by a solvent displacement process: influence of the composition on physicochemical and structural properties. J Pharm Sci. 2000;89(5):614–26. doi:10.1002/(SICI)1520-6017(200005)89:5<614::AID-JPS7>3.0.CO;2-7.

    Article  CAS  PubMed  Google Scholar 

  25. Haas SE, Bettoni CC, de Oliveira LK, Guterres SS, Dalla CT. Nanoencapsulation increases quinine antimalarial efficacy against Plasmodium berghei in vivo. Int J Antimicrob Agents. 2009;34(2):156–61. doi:10.1016/j.ijantimicag.2009.02.024.

    Article  CAS  PubMed  Google Scholar 

  26. Bajerski LM, Haas SE, Maciel TR. Simultaneous determination of curcumin and quinine co-encapsulated in nanoemulsion by stability-indicating LC method. Curr Pharm Anal. 2017;13 doi:10.2174/1573412913666170330151347.

  27. Michels LR, Bajerski L, Maciel TR, Colome LM, Haas SE. Quinine-loaded polymeric nanoparticles: validation of a simple HPLC-PDA method to determine drug entrapment and evaluation of its photostability. J App Pharm Sci. 2016;6(2):009–15. doi:10.7324/JAPS.2016.60202.

    Article  Google Scholar 

  28. From the Centers for Disease Control and Prevention. Sun-protection behaviors used by adults for their children—United States, 1997. JAMA. 1998;280(4):317–8.

    Google Scholar 

  29. Tepongning RN, Lucantoni L, Nasuti CC, Dori GU, Yerbanga SR, Lupidi G, et al. Potential of a Khaya ivorensis-Alstonia boonei extract combination as antimalarial prophylactic remedy. J Ethnopharmacol. 2011;137(1):743–51. doi:10.1016/j.jep.2011.06.036.

    Article  PubMed  Google Scholar 

  30. Guterres SS, Weiss V, de Lucca FL, Pohlmann AR. Influence of benzyl benzoate as oil core on the physicochemical properties of spray-dried powders from polymeric nanocapsules containing indomethacin. Drug Deliv. 2000;7(4):195–9. doi:10.1080/107175400455119.

    Article  CAS  PubMed  Google Scholar 

  31. Haas SE, de Andrade C, Sansone PE, Guterres S, Dalla CT. Development of innovative oil-core self-organized nanovesicles prepared with chitosan and lecithin using a 2(3) full-factorial design. Pharm Dev Technol. 2014;19(7):769–78. doi:10.3109/10837450.2013.829094.

    Article  CAS  PubMed  Google Scholar 

  32. Venturini CG, Bruinsmann FA, Contri RV, Fonseca FN, Frank LA, D’Amore CM, et al. Co-encapsulation of imiquimod and copaiba oil in novel nanostructured systems: promising formulations against skin carcinoma. Eur J Pharm Sci. 2015;79:36–43. doi:10.1016/j.ejps.2015.08.016.

    Article  CAS  PubMed  Google Scholar 

  33. Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK. Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin. J Agric Food Chem. 2002;50(13):3668–72.

    Article  CAS  PubMed  Google Scholar 

  34. Li J, Jiang Y, Wen J, Fan G, Wu Y, Zhang C. A rapid and simple HPLC method for the determination of curcumin in rat plasma: assay development, validation and application to a pharmacokinetic study of curcumin liposome. Biomed Chromatogr. 2009;23(11):1201–7. doi:10.1002/bmc.1244.

    Article  CAS  PubMed  Google Scholar 

  35. Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385(1–2):113–42. doi:10.1016/j.ijpharm.2009.10.018.

    Article  CAS  PubMed  Google Scholar 

  36. Santos-Magalhaes NS, Pontes A, Pereira VM, Caetano MN. Colloidal carriers for benzathine penicillin G: nanoemulsions and nanocapsules. Int J Pharm. 2000;208(1–2):71–80.

    Article  CAS  PubMed  Google Scholar 

  37. Zili Z, Sfar S, Fessi H. Preparation and characterization of poly-epsilon-caprolactone nanoparticles containing griseofulvin. Int J Pharm. 2005;294(1–2):261–7. doi:10.1016/j.ijpharm.2005.01.020.

    Article  CAS  PubMed  Google Scholar 

  38. Moraes BS, Vieira SM, Salgueiro WG, Michels LR, Colomé LM, Avila DS, et al. Clozapine-loaded polysorbate-coated polymeric nanocapsules: physico-chemical characterization and toxicity evaluation in Caenorhabditis elegans model. J Nanosci Nanotechnol. 2016;16(2):1257–64. doi:10.1166/jnn.2016.11668.

    Article  CAS  PubMed  Google Scholar 

  39. Domingues GS, Guterres SS, Beck RCR, Pohlmann AR. Micropartículas nanorrevestidas contendo um fármaco modelo hidrofóbico: preparação em etapa única e caracterização biofarmacêutica. Quim Nova. 2008;31(8):1966–72. doi:10.1590/S0100-40422008000800009.

    Article  CAS  Google Scholar 

  40. Fiel LA, Contri RV, Bica JF, Figueiro F, Battastini AM, Guterres SS, et al. Labeling the oily core of nanocapsules and lipid-core nanocapsules with a triglyceride conjugated to a fluorescent dye as a strategy to particle tracking in biological studies. Nanoscale Res Lett. 2014;9(1):233. doi:10.1186/1556-276X-9-233.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Seremeta KP, Chiappetta DA, Sosnik A. Poly(epsilon-caprolactone), Eudragit(R) RS 100 and poly(epsilon-caprolactone)/Eudragit(R) RS 100 blend submicron particles for the sustained release of the antiretroviral efavirenz. Colloids Surf B Biointerfaces. 2013;102:441–9. doi:10.1016/j.colsurfb.2012.06.038.

    Article  CAS  PubMed  Google Scholar 

  42. Venturini CG, Jäger E, Oliveira CP, Bernardi A, Battastini AMO, Guterres SS, et al. Formulation of lipid core nanocapsules. Colloids Surf A Physicochem Eng Asp. 2011;375:200–8. doi:10.1016/j.colsurfa.2010.12.011.

    Article  CAS  Google Scholar 

  43. Luo Y, Teng Z, Li Y, Wang Q. Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr Polym. 2015;122:221–9. doi:10.1016/j.carbpol.2014.12.084.

    Article  CAS  PubMed  Google Scholar 

  44. Lertsutthiwong P, Rojsitthisak P. Chitosan-alginate nanocapsules for encapsulation of turmeric oil. Pharmazie. 2011;66(12):911–5. doi:10.1691/ph.2011.1068.

    CAS  PubMed  Google Scholar 

  45. Dehghan AA, Masishi M, Ayatollahi S. Phase behavior and interfacial tension evaluation of a newly designed surfactant on heavy oil displacement efficiency; effects of salinity, wettability, and capillary pressure. Fluid Phase Equilib. 2015;396:20–7. doi:10.1016/j.fluid.2015.03.028.

    Article  CAS  Google Scholar 

  46. Nguyen CA, Konan-Kouakou YN, Allemann E, Doelker E, Quintanar-Guerrero D, Fessi H, et al. Preparation of surfactant-free nanoparticles of methacrylic acid copolymers used for film coating. AAPS PharmSciTech. 2006;7(3):63. doi:10.1208/pt070363.

    Article  PubMed  Google Scholar 

  47. Cruz L, Schaffazick SR, Dalla Costa T, Soares LU, Mezzalira G, da Silveira NP, et al. Physico-chemical characterization and in vivo evaluation of indomethacin ethyl ester-loaded nanocapsules by PCS, TEM, SAXS, interfacial alkaline hydrolysis and antiedematogenic activity. J Nanosci Nanotechnol. 2006;6(9–10):3154–62. doi:10.1166/jnn.2006.417.

    Article  CAS  PubMed  Google Scholar 

  48. Dabbas S, Kaushik RR, Dandamudi S, Kuesters GM, Campbell RB. Importance of the liposomal cationic lipid content and type in tumor vascular targeting: physicochemical characterization and in vitro studies using human primary and transformed endothelial cells. Endothelium. 2008;15(4):189–201. doi:10.1080/10623320802228583.

    Article  CAS  PubMed  Google Scholar 

  49. Alvarez-Roman R, Barre G, Guy RH, Fessi H. Biodegradable polymer nanocapsules containing a sunscreen agent: preparation and photoprotection. Eur J Pharm Biopharm. 2001;52(2):191–5.

    Article  CAS  PubMed  Google Scholar 

  50. Pohlmann AR, Fonseca FN, Paese K, Detoni CB, Coradini K, Beck RC, et al. Poly(-caprolactone) microcapsules and nanocapsules in drug delivery. Expert Opin Drug Deliv. 2013;10(5):623–38. doi:10.1517/17425247.2013.769956.

    Article  CAS  PubMed  Google Scholar 

  51. Zanotto-Filho ACK, Braganhol E, Schröder R, de Oliveira CM, Simões-Pires A, Battastini AM, et al. Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment. Eur J Pharm Biopharm. 2012;28:156–67. doi:10.1016/j.ejpb.2012.10.019.

    Google Scholar 

  52. Gargouri M, Sapin A, Bouli S, Becuwe P, Merlin JL, Maincent P. Optimization of a new non-viral vector for transfection: Eudragit nanoparticles for the delivery of a DNA plasmid. Technol Cancer Res Treat. 2009;8(6):433–44. doi:10.1177/153303460900800605.

    Article  CAS  PubMed  Google Scholar 

  53. Gottenbos B, Klatter F, Van Der Mei HC, Busscher HJ, Nieuwenhuis P. Late hematogenous infection of subcutaneous implants in rats. Clin Diagn Lab Immunol. 2001;8(5):980–3. doi:10.1128/CDLI.8.5.980-983.2001.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Contri RV, Katzer T, Ourique AF, da Silva AL, Beck RC, Pohlmann AR, et al. Combined effect of polymeric nanocapsules and chitosan hydrogel on the increase of capsaicinoids adhesion to the skin surface. J Biomed Nanotechnol. 2014;10(5):820–30. doi:10.1166/jbn.2014.1752.

    Article  CAS  PubMed  Google Scholar 

  55. Siqueira NM, Contri RV, Paese K, Beck RC, Pohlmann AR, Guterres SS. Innovative sunscreen formulation based on benzophenone-3-loaded chitosan-coated polymeric nanocapsules. Skin Pharmacol Physiol. 2011;24(3):166–74. doi:10.1159/000323273.

    Article  CAS  PubMed  Google Scholar 

  56. Santos SS, Lorenzoni A, Pegoraro NS, Denardi LB, Alves SH, Schaffazick SR, et al. Formulation and in vitro evaluation of coconut oil-core cationic nanocapsules intended for vaginal delivery of clotrimazole. Colloids Surf B Biointerfaces. 2014;116:270–6. doi:10.1016/j.colsurfb.2014.01.011.

    Article  CAS  PubMed  Google Scholar 

  57. Katzer T, Chaves P, Bernardi A, Pohlmann AR, Guterres SS, Beck RC. Castor oil and mineral oil nanoemulsion: development and compatibility with a soft contact lens. Pharm Dev Technol. 2014;19(2):232–7. doi:10.3109/10837450.2013.769569.

    Article  CAS  PubMed  Google Scholar 

  58. Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Positively charged polymeric nanoparticle reservoirs of terbinafine hydrochloride: preclinical implications for controlled drug delivery in the aqueous humor of rabbits. AAPS PharmSciTech. 2013;14(2):782–93. doi:10.1208/s12249-013-9964-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Santos SS, Lorenzoni A, Ferreira LM, Mattiazzi J, Adams AI, Denardi LB, et al. Clotrimazole-loaded Eudragit® RS100 nanocapsules: preparation, characterization and in vitro evaluation of antifungal activity against Candida species. Mater Sci Eng C Mater Biol Appl. 2013;33(3):1389–94. doi:10.1016/j.msec.2012.12.040.

    Article  CAS  PubMed  Google Scholar 

  60. Viehof A, Javot L, Beduneau A, Pellequer Y, Lamprecht A. Oral insulin delivery in rats by nanoparticles prepared with non-toxic solvents. Int J Pharm. 2013;443(1–2):169–74. doi:10.1016/j.ijpharm.2013.01.017.

    Article  CAS  PubMed  Google Scholar 

  61. Frank LA, Sandri G, D'Autilia F, Contri RV, Bonferoni MC, Caramella C, et al. Chitosan gel containing polymeric nanocapsules: a new formulation for vaginal drug delivery. Int J Nanomedicine. 2014;9:3151–61. doi:10.2147/IJN.S62599.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pignatello R, Bucolo C, Ferrara P, Maltese A, Puleo A, Puglisi G. Eudragit RS100 nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci. 2002;16(1–2):53–61.

    Article  CAS  PubMed  Google Scholar 

  63. Mora-Huertas CE, Garrigues O, Fessi H, Elaissari A. Nanocapsules prepared via nanoprecipitation and emulsification-diffusion methods: comparative study. Eur J Pharm Biopharm. 2012;80(1):235–9. doi:10.1016/j.ejpb.2011.09.013.

    Article  CAS  PubMed  Google Scholar 

  64. Bender EA, Cavalcante MF, Adorne MD, Colome LM, Guterres SS, Abdalla DS, et al. New strategy to surface functionalization of polymeric nanoparticles: one-pot synthesis of scFv anti-LDL(−)-functionalized nanocapsules. Pharm Res. 2014;31(11):2975–87. doi:10.1007/s11095-014-1392-5.

    Article  CAS  PubMed  Google Scholar 

  65. Schuh RS, Bruxel F, Teixeira HF. Physicochemical properties of lecithin-based nanoemulsions obtained by spontaneous emulsification or high-pressure homogenization. Quim Nova. 2014;37(7):1193–8. doi:10.5935/0100-4042.20140186.

    CAS  Google Scholar 

  66. Santander-Ortega MJ, Stauner T, Loretz B, Ortega-Vinuesa JL, Bastos-Gonzalez D, Wenz G, et al. Nanoparticles made from novel starch derivatives for transdermal drug delivery. J Control Release. 2010;141(1):85–92. doi:10.1016/j.jconrel.2009.08.012.

    Article  CAS  PubMed  Google Scholar 

  67. Friedrich RB, Fontana MC, Beck RCR, Pohlmann AR, Guterres SS. Development and physicochemical characterization of dexamethasone-loaded polymeric nanocapsule suspensions. Quim Nova. 2008;31(5):1131–6. doi:10.1590/S0100-40422008000500038.

    Article  CAS  Google Scholar 

  68. Srinivas M, Hopperstad MG, Spray DC. Quinine blocks specific gap junction channel subtypes. Proc Natl Acad Sci U S A. 2001;98(19):10942–7. doi:10.1073/pnas.191206198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mantovani RA, Cavallieri AL, Netto FM, Cunha RL. Stability and in vitro digestibility of emulsions containing lecithin and whey proteins. Food Funct. 2013;4(9):1322–31. doi:10.1039/c3fo60156k.

    Article  CAS  PubMed  Google Scholar 

  70. Food and Drug Administration (FDA). Q1B Photostability Testing of New Drug Substances and Products. Rockville: ICH; 1996.

  71. Christensen KL, Christensen JO, Frokjaer S, Langballe P, Hansen LL. Influence of temperature and storage time after light exposure on the quinine monohydrochloride chemical actinometric system. Eur J Pharm Sci. 2000;9(3):317–21.

    Article  CAS  PubMed  Google Scholar 

  72. Fontana MC, Coradini K, Pohlmann AR, Guterres SS, Beck RC. Nanocapsules prepared from amorphous polyesters: effect on the physicochemical characteristics, drug release, and photostability. J Nanosci Nanotechnol. 2010;10(5):3091–9. doi:10.1166/jnn.2010.1920.

    Article  CAS  PubMed  Google Scholar 

  73. Ourique AF, Pohlmann AR, Guterres SS, Beck RC. Tretinoin-loaded nanocapsules: preparation, physicochemical characterization, and photostability study. Int J Pharm. 2008;352(1–2):1–4. doi:10.1016/j.ijpharm.2007.12.035.

    Article  CAS  PubMed  Google Scholar 

  74. Paese K, Jager A, Poletto FS, Pinto EF, Rossi-Bergmann B, Pohlmann AR, et al. Semisolid formulation containing a nanoencapsulated sunscreen: effectiveness, in vitro photostability and immune response. J Biomed Nanotechnol. 2009;5(3):240–6. doi:10.1166/jbn.2009.1028.

    Article  CAS  PubMed  Google Scholar 

  75. Coradini K, Lima FO, Oliveira CM, Chaves PS, Athayde ML, Carvalho LM, et al. Co-encapsulation of resveratrol and curcumin in lipid-core nanocapsules improves their in vitro antioxidant effects. Eur J Pharm Biopharm. 2014;88(1):178–85. doi:10.1016/j.ejpb.2014.04.009.

    Article  CAS  PubMed  Google Scholar 

  76. Detoni CB, Souto GD, da Silva AL, Pohlmann AR, Guterres SS. Photostability and skin penetration of different E-resveratrol-loaded supramolecular structures. Photochem Photobiol. 2012;88(4):913–21. doi:10.1111/j.1751-1097.2012.01147.x.

    Article  CAS  PubMed  Google Scholar 

  77. Weber J, Funk NL, Motta MH, Guedes AM, Visintainer AP, Tedesco SB, et al. Association of borage oil and betamethasone dipropionate in lipid-core nanocapsules: characterization, photostability and in vitro irritation test. J Nanosci Nanotechnol. 2016;16(2):1354–62. doi:10.1166/jnn.2016.11674.

    Article  CAS  PubMed  Google Scholar 

  78. Savian AL, Rodrigues D, Weber J, Ribeiro RF, Motta MH, Schaffazick SR, et al. Dithranol-loaded lipid-core nanocapsules improve the photostability and reduce the in vitro irritation potential of this drug. Mater Sci Eng C Mater Biol Appl. 2015;46:69–76. doi:10.1016/j.msec.2014.10.011.

    Article  CAS  PubMed  Google Scholar 

  79. Jimenez MM, Pelletier J, Bobin MF, Martini MC. Influence of encapsulation on the in vitro percutaneous absorption of octyl methoxycinnamate. Int J Pharm. 2004;272(1–2):45–55. doi:10.1016/j.ijpharm.2003.11.029.

    Article  CAS  PubMed  Google Scholar 

  80. Onaku LO, Attama AA, Okore VC, Tijani AY, Ngene AA, Esimone CO. Antagonistic antimalarial properties of pawpaw leaf aqueous extract in combination with artesunic acid in Plasmodium berghei-infected mice. J Vector Borne Dis. 2011;48(2):96–100.

    CAS  PubMed  Google Scholar 

  81. Abolghasemi E, Moosa-Kazemi SH, Davoudi M, Reisi A, Satvat MT. Comparative study of chloroquine and quinine on malaria rodents and their effects on the mouse testis. Asian Pac J Trop Biomed. 2012;2(4):311–4. doi:10.1016/S2221-1691(12)60030-6.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Nandakumar DN, Nagaraj VA, Vathsala PG, Rangarajan P, Padmanaban G. Curcumin-artemisinin combination therapy for malaria. Antimicrob Agents Chemother. 2006;50(5):1859–60. doi:10.1128/AAC.50.5.1859-1860.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN. Curcumin for malaria therapy. Biochem Biophys Res Commun. 2005;326(2):472–4. doi:10.1016/j.bbrc.2004.11.051.

    Article  CAS  PubMed  Google Scholar 

  84. Aditya NP, Chimote G, Gunalan K, Banerjee R, Patankar S, Madhusudhan B. Curcuminoids-loaded liposomes in combination with arteether protects against Plasmodium berghei infection in mice. Exp Parasitol. 2012;131(3):292–9. doi:10.1016/j.exppara.2012.04.010.

    Article  CAS  PubMed  Google Scholar 

  85. Branquinho RT, Mosqueira VC, de Oliveira-Silva JC, Simões-Silva MR, Saúde-Guimarães DA, de Lana M. Sesquiterpene lactone in nanostructured parenteral dosage form is efficacious in experimental chagas disease. Antimicrob Agents Chemother. 2014:2067–75. doi:10.1128/AAC.00617-13.

  86. Espuelas MS, Legrand P, Loiseau PM, Bories C, Barratt G, Irache JM. In vitro antileishmanial activity of amphotericin B loaded in poly(epsilon-caprolactone) nanospheres. J Drug Target. 2002;10(8):593–9. doi:10.1080/1061186021000060738.

    Article  CAS  PubMed  Google Scholar 

  87. Gressler LT, Oliveira CB, Coradini K, Dalla Rosa L, Grando TH, Baldissera MD, et al. Trypanocidal activity of free and nanoencapsulated curcumin on Trypanosoma evansi. Parasitology. 2015;142(3):439–48. doi:10.1017/S0031182014001292.

    Article  CAS  PubMed  Google Scholar 

  88. Bruxel F, Bochot A, Diel D, Wild L, Carvalho EL, Cojean S, et al. Adsorption of antisense oligonucleotides targeting malarial topoisomerase II on cationic nanoemulsions optimized by a full factorial design. Curr Top Med Chem. 2014;14(9):1161–71.

    Article  CAS  PubMed  Google Scholar 

  89. Bruxel F, Vilela JM, Andrade MS, Malachias A, Perez CA, Magalhaes-Paniago R, et al. Investigation of the structural organization of cationic nanoemulsion/antisense oligonucleotide complexes. Colloids Surf B Biointerfaces. 2013;112:530–6. doi:10.1016/j.colsurfb.2013.08.035.

    Article  CAS  PubMed  Google Scholar 

  90. Kaushik NK, Sharma J, Sahal D. Anti-plasmodial action of de novo-designed, cationic, lysine-branched, amphipathic, helical peptides. Malar J. 2012;11:256. doi:10.1186/1475-2875-11-256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank CNPq (Brazilian Federal Agency for the Support and Evaluation of Graduate Education) and FAPERGS (Research Support Foundation of Rio Grande do Sul) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Elisa Haas.

Ethics declarations

All animal procedures were reviewed and approved by the Animal Experimentation Ethics Committee of the Federal University of Pampa (036/2014).

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, G.S., Maciel, T.R., Piegas, E. et al. Optimization of Curcuma Oil/Quinine-Loaded Nanocapsules for Malaria Treatment. AAPS PharmSciTech 19, 551–564 (2018). https://doi.org/10.1208/s12249-017-0854-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0854-6

KEY WORDS

Navigation