Skip to main content
Log in

In Situ Salification in Polar Solvents: a Paradigm for Enabling Drug Delivery of Weakly Ionic Drugs as Amorphous Solid Dispersion

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Solubility challenge for a poorly water-soluble drug gets further intensified when it is weakly ionic because the most common solubility enhancement technique, salt formation, becomes less feasible. Salt screening for such drugs often concludes with either a difficult to crystalize salt or an unstable salt, leading the scientists to explore other solubility enhancement technique like amorphous solid dispersions which is comparatively costlier, time-consuming and may require use of hazardous organic solvents. Present study evaluated in situ salification in polar protic solvents for dissolving poorly water-soluble drug Itraconazole which is weakly ionic and not very amenable to formation of stable inorganic salts. Through systematic selection of solvents, counterions and polymers, an amorphous solid dispersion of drug salt was obtained. In vitro characterizations with polarized light microscopy (PLM), modulated differential scanning calorimetry (mDSC), Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD) confirmed the physical and chemical stability of the amorphous solid dispersion. In vivo pharmacokinetic study showed that the drug salt amorphous solid dispersion achieved 45 times higher plasma exposure compared to crystalline drug. This study provides one of the first data sets for the hypothesis that in situ drug salts can be utilized for manufacturing amorphous solid dispersions of weakly ionic drugs and leverages the solubility advantage of salts and amorphous state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Buckley ST, Frank KJ, Fricker G, Brandl M. Biopharmaceutical classification of poorly soluble drugs with respect to "enabling formulations". Eur J Pharm Sci. 2013;50:8–16.

    Article  CAS  PubMed  Google Scholar 

  2. Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65:315–499.

    Article  PubMed  Google Scholar 

  3. Lee TW, Boersen NA, Hui HW, Chow SF, Wan KY, Chow AH. Delivery of poorly soluble compounds by amorphous solid dispersions. Curr Pharm Des. 2014;20:303–24.

    Article  CAS  PubMed  Google Scholar 

  4. Fong SY, Brandl M, Bauer-Brandl A. Phospholipid-based solid drug formulations for oral bioavailability enhancement: a meta-analysis. Eur J Pharm Sci. 2015;80:89–110.

    Article  CAS  PubMed  Google Scholar 

  5. Leone F, Cavalli R. Drug nanosuspensions: a ZIP tool between traditional and innovative pharmaceutical formulations. Expert Opin Drug Deliv. 2015;12:1607–25.

    Article  PubMed  Google Scholar 

  6. Zand D, Templeton AC, Marinaro W, Rumondor ACF, Keisisoglou F, Deursch B, et al. Leveraging solid state forms and physicochemical properties for early clinical formulation efforts: opportunities and challenges during Telcagepant liquid capsule development. In: Tempelton AC, Byrn SR, Haskell RJ, Prisinzano TE, editors. Discovering & developing molecules with optimal drug-like properties. New York: Springer; 2015. p. 487–92.

    Google Scholar 

  7. Bighley LD, Berge SM, Monkhouse DC. Salt forms of drugs and absorption. In: Swarbrick J, Boylan J, editors. Encyclopaedia of pharmaceutical technology. New York: Dekker; 1996. p. 453–99.

    Google Scholar 

  8. Anderson BD, Flora KP. Preparation of water-soluble compounds through salt formation. In: Wermuth CG, editor. The practice of medicinal chemistry. London: Academic; 1996. p. 739–54.

    Google Scholar 

  9. Serajuddin ATM. Salt formation to improve drug solubility. Adv Drug Deliv Rev. 2007;59:603–16.

    Article  CAS  PubMed  Google Scholar 

  10. Teaf CM, Garber MM, Kuperberg JM. Properties and effects of solvents & solvent- like chemicals. In: Roberts SM, James RC, Williams PL, editors. Principles of toxicology: environmental & industrial applications. New Jersey: John Wiley & Sons; 2015. p. 339–41.

    Google Scholar 

  11. Remenar JF, Morissette SL, Peterson ML, Moulton B, MacPhee JM, Guzmán HR, et al. Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids. J Am Chem Soc. 2003;125:8456–7.

    Article  CAS  PubMed  Google Scholar 

  12. Tao T, Zhao Y, Wu J, Zhou B. Preparation and evaluation of Itraconazole dihydrochloride for the solubility and dissolution rate enhancement. Int J Pharm. 2009;367:109–14.

    Article  CAS  PubMed  Google Scholar 

  13. Shevchenko A, Bimbo LM, Miroshnyk I, Haarala J, Jelínková K, Syrjänen K, et al. A new cocrystal and salts of itraconazole: comparison of solid-state properties, stability and dissolution behaviour. Int J Pharm. 2012;436:403–9.

    Article  CAS  PubMed  Google Scholar 

  14. Tarsaa PB, Towlerb CS, Woollamb G, Berghausenc J. The influence of aqueous content in small scale salt screening—improving hit rate for weakly basic, low solubility drugs. Eur J Pharm Sci. 2010;41:23–30.

    Article  Google Scholar 

  15. Gilis PMV, De Conde VFV, Vandecruys RPG, inventors; Janssen Pharmaceutica Nv, assignee. Beads having a core coated with an antifungal and a polymer. United States patent 5633015. 1997. May 27.

  16. Henderson RK, Jiménez-González C, Constable DJC, Alston SR, Inglis G, Fisher G, et al. Expanding GSK’s solvent selection guide – embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem. 2011;13:854–62.

    Article  CAS  Google Scholar 

  17. Prat D, Pardigon O, Flemming H, Letestu S, Ducandas V, Isnard P, et al. Sanofi’s solvent selection guide: a step toward more sustainable processes. Org Process Res Dev. 2013;17:1517–25.

    Article  CAS  Google Scholar 

  18. Alfonsi K, Colberg J, Dunn PJ, Fevig T, Jennings S, Johnson TA, et al. Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation. Green Chem. 2008;10:31–6.

    Article  CAS  Google Scholar 

  19. Garrido G, Rafols C, Bosch E. Acidity constants in methanol/water mixtures of polycarboxylic acids used in drug salt preparations—potentiometric determination of aqueous pKa values of quetiapine formulated as hemifumarate. Eur J Pharm Sci. 2006;28:118–27.

    Article  CAS  PubMed  Google Scholar 

  20. Rived F, Canals I, Bosch E, Roses M. Acidity in methanol–water. Anal Chim Acta. 2001;439:315–33.

    Article  CAS  Google Scholar 

  21. Anslyn EV, Dougherty DA. Acid-base chemistry. In: Murdzek J, editor. Modern physical organic chemistry. California: University Science Books; 2006. p. 272.

  22. Prat D, Hayler J, Wells A. A survey of solvent selection guides. Green Chem. 2014;16:4546–51.

    Article  CAS  Google Scholar 

  23. Serajuddin ATM, Pudipeddi M. Salt-selection strategies. In: Stahl PH, Wermuth CG, editors. Handbook of pharmaceutical salts: properties, selection and use. Weinheim: Wiley; 2002. p. 135–60.

    Google Scholar 

  24. Meng F, Dave V, Chauhan H. Qualitative and quantitative methods to determine miscibility in amorphous drug-polymer systems. Eur J Pharm Sci. 2015;77:106–11.

    Article  CAS  PubMed  Google Scholar 

  25. Pine SH. The scope of nucleophilic substitution. In: Organic chemistry. New Delhi: Tata McGraw-Hill publishing company Ltd.; 2008. p.352.

  26. Brown WH, Iverson BL, Anslyn E, Foote CS. Alcohols. In: Organic chemistry. USA: Brooks/Cole; 2013. p. 405.

  27. Inkmann E, Holzgrabe U. 1H and 13C nuclear magnetic resonance studies of the sites of protonation in itraconazole and fluconazole. J Pharm Biomed Anal. 1999;20:297–307.

    Article  CAS  PubMed  Google Scholar 

  28. Miller DA, Gil M. Spray-Drying technology. In: Williams III RO, Watts AB, Miller DA, editors. Formulating poorly water soluble drug. New York: Springer; 2012. p. 394.

    Google Scholar 

  29. Huang L, Dong J. Formulation strategies and practice used for drug candidates with water-insoluble properties for toxicology, biology and pharmacology studies in discovery support. In: Liu R, editor. Water-insoluble drug formulation. USA: CRC press; 2008. p. 115.

    Google Scholar 

  30. Loftsson T. Complex formation. In: Felton L, editor. Remington essentials of pharmaceutics. London: Pharmaceutical press; 2013. p. 325–6.

    Google Scholar 

  31. Miller DA, McGinity JW, Williams RO III. Solid dispersion technologies. In: Williams III RO, Taft DR, JT MC, editors. Advanced drug formulation design to optimise therapeutic outcome. Florida: CRC press; 2008. p. 475.

    Google Scholar 

  32. Parikh T, Sandhu HK, Talele TT, Serajuddin TM. Characterization of solid dispersion of Itraconazole prepared by solubilization in concentrated aqueous solutions of weak organic acids and drying. Pharm Res. 2016;33:1456–71.

    Article  CAS  PubMed  Google Scholar 

  33. Chauhan H, Hui-gu C, Atef E. Correlating the behavior of polymers in solution as precipitation inhibitor to its amorphous stabilization ability in solid dispersions. J Pharm Sci. 2013;102:1924–35.

    Article  CAS  PubMed  Google Scholar 

  34. Towler CS, Li T, Wikström H, Remick DM, Sanchez-Felix MV, Taylor LS. An investigation into the influence of counterion on the properties of some amorphous organic salts. Mol Pharm. 2008;5:946–55.

    Article  CAS  PubMed  Google Scholar 

  35. Nielsen LH, Gordon S, Holm R, Selen A, Rades T, Müllertz A. Preparation of an amorphous sodium furosemide salt improves solubility and dissolution rate and leads to a faster Tmax after oral dosing to rats. Eur J Pharm Sci. 2013;85:945–51.

    Google Scholar 

  36. Lee SH, Bae JH, Park Y, Adhikari BR, Mao C, Kim D, et al. Sulfonic acid salts of donepezil and stabilization of amorphous donepezil via formation of amorphous salts. Cryst Growth Des. 2015;15:3123–30.

    Article  CAS  Google Scholar 

  37. Stoimenovski J, MacFarlane DR, Bica K, Rogers RD. Crystalline vs. ionic liquid salt forms of active pharmaceutical ingredients: a position paper. Pharm Res. 2010;27:521–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Nair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, R., Lamare, I., Tiwari, N.K. et al. In Situ Salification in Polar Solvents: a Paradigm for Enabling Drug Delivery of Weakly Ionic Drugs as Amorphous Solid Dispersion. AAPS PharmSciTech 19, 326–337 (2018). https://doi.org/10.1208/s12249-017-0808-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0808-z

KEY WORDS

Navigation