Skip to main content

Advertisement

Log in

Dual-Prevention for UV-Induced Skin Damage: Incorporation of Melatonin-Loaded Elastic Niosomes into Octyl Methoxycinnamate Pickering Emulsions

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Incorporation of antioxidants into sunscreens is a logical approach, yet co-delivery of them with UV filters is a challenge. Here, we purposed a combination therapy, in which the chemical UV filter, octyl methoxycinnamate, was accumulated on upper skin while the antioxidant, melatonin, can penetrate deeper layers to show its effects. Melatonin-loaded elastic niosomes and octyl methoxycinnamate Pickering emulsion were prepared separately. Lyophilized elastic niosomes were dispersed into the Pickering emulsion to prepare the proposed combination formulation. The characterization studies of the formulations revealed that elastic niosomes can be prepared with tunable nanometer sizes, whereas Pickering emulsions can encapsulate the UV filter in micrometer-sized droplets. Melatonin-loaded elastic niosomes prepared with Tween80/Span80 mixture were 146 nm with a PI of 0.438, and 58.42% entrapment efficiency was achieved. The mean diameter size of the combination formulation was 27.8 μm. Ex vivo permeation studies revealed that 7.40% of octyl methoxycinnamate and 58% of melatonin were permeated through the rat skin while 27.6% octyl methoxycinnamate and 37% of melatonin accumulated in the skin after 24 h. Cell culture studies with real-time cell analyzer showed that the proposed formulation consist of melatonin-loaded elastic niosomes and octyl methoxycinnamate Pickering emulsion had no negative effect on the cell proliferation and viability. According to α,α-diphenyl-β-picrylhydrazyl free radical scavenging method, the proposed formulation showed as high antioxidant activity as melatonin itself. It is concluded that the proposed formulation would be a promising dual therapy for UV-induced skin damage with co-delivery strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Morabito K, Shapley NC, Steeley KG, Tripathi A. Review of sunscreen and the emergence of non-conventional absorbers and their applications in ultraviolet protection. Int J Cosmet Sci. 2011;33(5):385–90.

    Article  CAS  PubMed  Google Scholar 

  2. Sierra AF, Ramírez MLG, Campmany ACC, Martínez AR, Naveros BC. In vivo and in vitro evaluation of the use of a newly developed melatonin loaded emulsion combined with UV filters as a protective agent against skin irradiation. J Dermatol Sci. 2013;69(3):202–14.

    Article  CAS  PubMed  Google Scholar 

  3. De Oliveira CA, Peres DDA, Graziola F, Chacra NAB, De Araújo GLB, Flórido AC, et al. Cutaneous biocompatible rutin-loaded gelatin-based nanoparticles increase the SPF of the association of UVA and UVB filters. Eur J Pharm Sci. 2016;81:1–9.

    Article  Google Scholar 

  4. Afonso S, Horita K, Sousa E, Silva JP, Almeida IF, Amaral MH, Lobao PA, Costa PC, Miranda MS, Esteves Da Silva JC, Sousa Lobo JM. Photodegradation of avobenzone: stabilization effect of antioxidants. J Photochem Photobiol B. 2014;140:36–40.

    Article  CAS  PubMed  Google Scholar 

  5. Wu Y, Matsui MS, Chen JZ, Jin X, Shu CM, Jin GY, Dong GH, Wang YK, Gao XH, Chen HD, Li YH. Antioxidants add protection to a broad-spectrum sunscreen. Clin Exp Dermatol. 2011;36(2):178–87.

    Article  CAS  PubMed  Google Scholar 

  6. Fischer TW, Kleszczyński K, Hardkop LH, Kruse N, Zillikens D. Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVR-induced depletion, and protects against the formation of DNA damage (8-hydroxy-2′-deoxyguanosine) in ex vivo human skin. J Pineal Res. 2013;54(3):303–12.

    Article  CAS  PubMed  Google Scholar 

  7. Cole C, Shyr T, Ou-Yang H. Metal oxide sunscreens protect skin by absorption, not by reflection or scattering. Photodermatol Photoimmunol Photomed. 2016;32(1):5–10.

    Article  CAS  PubMed  Google Scholar 

  8. Chisvert A, Salvador A. 3.1- UV filters in sunscreens and other cosmetics. Regulatory aspects and analytical methods BT-analysis of cosmetic products. In Amsterdam: Elsevier; 2007. p. 83–120.

  9. Monteiro MS, Ozzetti RA, Vergnanini AL, de Brito-Gitirana L, Volpato NM, de Freitas ZMF, et al. Evaluation of octyl p-methoxycinnamate included in liposomes and cyclodextrins in anti-solar preparations: preparations, characterizations and in vitro penetration studies. Int J Nanomedicine. 2012;7:3045–58.

    CAS  PubMed  Google Scholar 

  10. Durand L, Habran N, Henschel V, Amighi K. Encapsulation of ethylhexyl methoxycinnamate, a light-sensitive UV filter, in lipid nanoparticles. J Microencapsul. 2010;27(8):714–25.

    Article  CAS  PubMed  Google Scholar 

  11. Olvera-Martínez BI, Cázares-Delgadillo J, Calderilla-Fajardo SB, Villalobos-García R, Ganem-Quintanar A, Quintanar-Guerrero D. Preparation of polymeric nanocapsules containing octyl methoxycinnamate by the emulsification-diffusion technique: penetration across the stratum corneum. J Pharm Sci. 2005;94(7):1552–9.

    Article  PubMed  Google Scholar 

  12. Sanad RA, Abdel Malak NS, el Bayoomy TS, Badawi AA. Formulation of a novel oxybenzone-loaded nanostructured lipid carriers (NLCs). AAPS Pharm Sci Tech. 2010;11(4):1684–94.

    Article  CAS  Google Scholar 

  13. Shah P, He YY. Molecular regulation of UV-induced DNA repair. Photochem Photobiol. 2015;91(2):254–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao XI, Wang D, Gong XF, Sun SP, Li Q. Preparation and characterization of microcapsules encapsulating octyl methoxycinnamate by complex coacervation. Indian J Pharm Sci. 2016;78(2):193–202.

    Google Scholar 

  15. Wang SQ, Lim HW. Current status of the sunscreen regulation in the United States: 2011 Food and Drug Administration’s final rule on labeling and effectiveness testing. J Am Acad Dermatol. 2011;65(4):863–9.

    Article  PubMed  Google Scholar 

  16. D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci. 2013;14(6):12222–48.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Karaaslan C, Suzen S. Antioxidant properties of melatonin and its potential action in diseases. Curr Top Med Chem. 2015;15(9):894–903.

    Article  CAS  PubMed  Google Scholar 

  18. Fischer TW, Slominski A, Zmijewski MA, Reiter RJ, Paus R. Melatonin as a major skin protectant: from free radical scavenging to DNA damage repair. Exp Dermatol. 2008;17(9):713–30.

    Article  CAS  PubMed  Google Scholar 

  19. Gurer-Orhan H, Suzen S. Melatonin, its metabolites and its synthetic analogs as multi-faceted compounds: antioxidant, Prooxidant and inhibitor of bioactivation reactions. Curr Med Chem. 2015;22(4):490–9.

    Article  CAS  PubMed  Google Scholar 

  20. Bangha E, Elsner P, Kistler GS. Suppression of UV-induced erythema by topical treatment with melatonin (N-acetyl-5-methoxytryptamine). A dose response study. Arch Dermatol Res. 1996;288(9):522–6.

    Article  CAS  PubMed  Google Scholar 

  21. Marto J, Ascenso A, Goncalves LM, Gouveia LF, Manteigas P, Pinto P, Oliveira E, Almeida AJ, Ribeiro HM. Melatonin-based pickering emulsion for skin’s photoprotection. Drug Deliv. 2016;23:1594–607.

    Article  CAS  PubMed  Google Scholar 

  22. Tuncay Tanriverdi S, Cheaburu-Yilmaz CN, Carbone S, Ozer O. Preparation and in vitro evaluation of melatonin-loaded HA/PVA gel formulations. Pharm Dev Technol. 2016;1–11.

  23. Flo A, Calpena AC, Halbaut L, Araya EI, Fernandez F, Clares B. Melatonin delivery: transdermal and transbuccal evaluation in different vehicles. Pharm Res. 2016;33:1615–27.

    Article  CAS  PubMed  Google Scholar 

  24. Hafner A, Lovric J, Pepic I, Filipovic-Grcic J. Lecithin/chitosan nanoparticles for transdermal delivery of melatonin. J Microencapsul. 2011;28:807–15.

    Article  CAS  PubMed  Google Scholar 

  25. Marianecci C, Di Marzio L, Rinaldi F, Celia C, Paolino D, Alhaique F, et al. Niosomes from 80s to present: the state of the art. Adv Colloid Interf Sci. 2014;205:187–206.

    Article  CAS  Google Scholar 

  26. Manosroi A, Chankhampan C, Ofoghi H, Manosroi W, Manosroi J. Low cytotoxic elastic niosomes loaded with salmon calcitonin on human skin fibroblasts. Hum Exp Toxicol. 2013;32(1):31–44.

    Article  CAS  PubMed  Google Scholar 

  27. Frelichowska J, Bolzinger MA, Chevalier Y. Pickering emulsions with bare silica. Colloids Surfaces A Physicochem Eng Asp. 2009;343(1–3):70–4.

    Article  CAS  Google Scholar 

  28. Marto J, Ascenso A, Simoes S, Almeida AJ, Ribeiro HM. Pickering emulsions: challenges and opportunities in topical delivery. Expert Opin Drug Deliv. 2016;13(8):1093–107.

    Article  CAS  PubMed  Google Scholar 

  29. Frelichowska J, Bolzinger MA, Pelletier J, Valour JP, Chevalier Y. Topical delivery of lipophilic drugs from o/w Pickering emulsions. Int J Pharm. 2009;371(1–2):56–63.

    Article  CAS  PubMed  Google Scholar 

  30. Marto J, Gouveia LF, Goncalves L, Chiari-Andreo BG, Isaac V, Pinto P, Oliveira E, Almeida AJ, Ribeiro HM. Design of novel starch-based Pickering emulsions as platforms for skin photoprotection. J Photochem Photobiol B. 2016;162:56–64.

    Article  CAS  PubMed  Google Scholar 

  31. Manosroi A, Chankhampan C, Manosroi W, Manosroi J. Transdermal absorption enhancement of papain loaded in elastic niosomes incorporated in gel for scar treatment. Eur J Pharm Sci. 2013;48(3):474–83.

    Article  CAS  PubMed  Google Scholar 

  32. Mahale NB, Thakkar PD, Mali RG, Walunj DR, Chaudhari SR. Niosomes: novel sustained release nonionic stable vesicular systems—an overview. Adv Colloid Interf Sci. 2012;183–184:46–54.

    Article  Google Scholar 

  33. Tuncay-Tanriverdi S, Ozer O. Novel topical formulations of terbinafine-HCl for treatment of onychomycosis. Eur J Pharm Sci. 2013;48(4–5):628–36.

    Article  Google Scholar 

  34. Modi PB, Shah NJ. Optimization of an in vitro release test for topical formulations containing eberconazole nitrate and mometasone furoate. Der Pharma Chemica. 2015;7(8):1–9.

    CAS  Google Scholar 

  35. Ahnfelt E, Sjögren E, Axén N, Lennernäs H. A miniaturized in vitro release method for investigating drug-release mechanisms. Int J Pharm. 2015;486(1–2):339–49.

    Article  CAS  PubMed  Google Scholar 

  36. Wang KJ, Zhang YJ, Yang CR. New phenolic constituents from Balanophora polyandra with radical-scavenging activity. Chem Biodivers. 2006;3(12):1317–24.

    Article  CAS  PubMed  Google Scholar 

  37. Erel Baykan S, Aydin F, Ballar P. In vitro cytotoxic properties of six Artemisia L. species. Turk J Pharm Sci. 2011;8(3):247–51.

    Google Scholar 

  38. Ruckmani K, Sankar V. Formulation and optimization of Zidovudine niosomes. AAPS Pharm Sci Tech. 2010;11(3):1119–27.

    Article  CAS  Google Scholar 

  39. Neubert RHH. Potentials of new nanocarriers for dermal and transdermal drug delivery. Eur J Pharm Biopharm. 2011;77(1):1–2.

    Article  CAS  PubMed  Google Scholar 

  40. Prow TW, Grice JE, Lin LL, Faye R, Butler M, Becker W, et al. Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev. 2011;63(6):470–91.

    Article  CAS  PubMed  Google Scholar 

  41. Ryoo YW, Suh SI, Mun KC, Kim BC, Lee KS. The effects of the melatonin on ultraviolet-B irradiated cultured dermal fibroblasts. J Dermatol Sci. 2001;27(3):162–9.

    Article  CAS  PubMed  Google Scholar 

  42. Manconi M, Sinico C, Valenti D, Lai F, Fadda AM. Niosomes as carriers for tretinoin: III. A study into the in vitro cutaneous delivery of vesicle-incorporated tretinoin. Int J Pharm. 2006;311(1–2):11–9.

    Article  CAS  PubMed  Google Scholar 

  43. Tavano L, Alfano P, Muzzalupo R, De Cindio B. Niosomes vs microemulsions: new carriers for topical delivery of capsaicin. Colloids Surfaces B Biointerfaces. 2011;87(2):333–9.

    Article  CAS  PubMed  Google Scholar 

  44. Sohrabi S, Haeri A, Mahboubi A, Mortazavi A, Dadashzadeh S. Chitosan gel-embedded moxifloxacin niosomes: an efficient antimicrobial hybrid system for burn infection. Int J Biol Macromol. 2016;85:625–33.

    Article  CAS  PubMed  Google Scholar 

  45. Özcan I, Azizoǧlu E, Senyiǧit T, Özyazici M, Özer Ö. Enhanced dermal delivery of diflucortolone valerate using lecithin/chitosan nanoparticles: in-vitro and in-vivo evaluations. Int J Nanomedicine. 2013;8:461–75.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Morishita C, Kawaguchi M. Rheological and interfacial properties of Pickering emulsions prepared by fumed silica suspensions pre-adsorbed poly(N-isopropylacrylamide). Colloids Surfaces A Physicochem Eng Asp. 2009;335(1–3):138–43.

    Article  CAS  Google Scholar 

  47. Fernandez P, Willenbacher N, Frechen T, Kühnle A. Vesicles as rheology modifier. Colloids Surf A Physicochem Eng Asp. 2005;262(1–3):204–10.

    Article  CAS  Google Scholar 

  48. Coviello T, Trotta AM, Marianecci C, Carafa M, Di Marzio L, Rinaldi F, et al. Gel-embedded niosomes: preparation, characterization and release studies of a new system for topical drug delivery. Colloids Surfaces B Biointerfaces. 2015;125:291–9.

    Article  CAS  PubMed  Google Scholar 

  49. Scalia S, Franceschinis E, Bertelli D, Iannuccelli V. Comparative evaluation of the effect of permeation enhancers, lipid nanoparticles and colloidal silica on in vivo human skin penetration of quercetin. Skin Pharmacol Physiol. 2013;26(2):57–67.

    Article  CAS  PubMed  Google Scholar 

  50. Andersen LP. The analgesic effects of exogenous melatonin in humans. Dan Med J. 2016;63(10)

  51. Campanini MZ, Custódio DL, Ivan ALM, Martins SM, Paranzini MJR, Martinez RM, et al. Topical formulations containing Pimenta pseudocaryophyllus extract: in vitro antioxidant activity and in vivo efficacy against UV-B-induced oxidative stress. AAPS Pharm Sci Tech. 2014;15(1):86–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ege University, Scientific Research Projects No. 13-ECZ-003. The authors would like to thank the Ege University, Faculty of Pharmacy, Pharmaceutical Sciences Research Center (FABAL), for the provided instrumentation. Authors are pursuing a patent from Turkish Patent Institute for this work. Patent application and research was conducted by the Ege University Technology Transfer Office, EBILTEM. Authors would like to thank Izmir Institute of Technology Center for Materials Research and Zehra Sinem YILMAZ for their help with the SEM studies and Yalçın Erzurumlu for his help with cell culture studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozgen Ozer.

Ethics declarations

Conflict of interest

The authors reveal no conflict of interest in this manuscript.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan Azizoglu, G., Tuncay Tanriverdi, S., Aydin Kose, F. et al. Dual-Prevention for UV-Induced Skin Damage: Incorporation of Melatonin-Loaded Elastic Niosomes into Octyl Methoxycinnamate Pickering Emulsions. AAPS PharmSciTech 18, 2987–2998 (2017). https://doi.org/10.1208/s12249-017-0786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0786-1

KEY WORDS

Navigation