Skip to main content
Log in

Molecular interactions of the inclusion complexes of hinokitiol and various cyclodextrins

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this study was to prepare inclusion complexes of hinokitiol (HT)/α-cyclodextrin (α-CD) and HT/β-cyclodextrin (β-CD) by cogrinding and to evaluate the differences in their formation. The physical properties of the preparation were evaluated by Job’s plot, phase solubility studies, differential scanning calorimetry, powder X-ray diffraction, solid fluorescence spectra, and infrared absorption spectra. Intermolecular interaction in the solid state was confirmed to be in the ratios HT/α-CD = 1/2 and HT/β-CD = 1/1. Results indicated that the dissolution property of HT was improved by inclusion in the complexes HT/α-CD and HT/β-CD compared with HT crystals. The 1H-1H ROESY NMR spectrum of HT/α-CD showed that part of the seven-membered ring of HT and the isopropyl group of HT was linked to the wider edges of the two α-CDs. In HT/β-CD, the seven-membered ring of HT interacted with the narrower edge of β-CD and the isopropyl group of HT interacted with the wider edges. This structure of inclusion complexes was attributed to the difference in the cavity diameter of the CD and was thought to influence the dissolution properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Oblak EZ, Bolstad ES, Ononye SN, Priestley ND, Hadden MK, Wright DL. The furan route to tropolones: probing the antiproliferative effects of β-thujaplicin analogs. Org Biomol Chem. 2012;10:8597–604.

    Article  PubMed  Google Scholar 

  2. Komaki N, Watanabe T, Ogasawara A, Sato N, Mikami T, Matsumoto T. Antifungal mechanism of hinokitiol against Candida albicans. Biol Pharm Bull. 2008;31:735–7.

    Article  CAS  PubMed  Google Scholar 

  3. Yen TB, Chang HT, Hsieh CC, Chang ST. Antifungal properties of ethanolic extract and its active compounds from Calocedrus macrolepis var. formosana (Florin) heartwood. Bioresour Technol. 2008;99:4871–7.

    Article  CAS  PubMed  Google Scholar 

  4. Miyamoto D, Kusagaya Y, Endo N, Sometani A, Takeo S, Suzuki T, Arima Y, Nakajima K, Suzuki Y. Thujaplicin-copper chelates inhibit replication of human influenza viruses. Antivir Res. 1998;39(2):89–100.

    Article  PubMed  Google Scholar 

  5. Koufaki M, Theodorou E, Alexi X, Nikoloudaki F, Alexis MN. Synthesis of tropolone derivatives and evaluation of their in vitro neuroprotective activity. Eur J Med Chem. 2010;45:1107–12.

    Article  CAS  PubMed  Google Scholar 

  6. Choi YG, Bae EJ, Kim DS, Park SH, Kwon SB, Na JI, Park KC. Differential regulation of melanosomal proteins after hinokitiol treatment. J Dermatol Sci. 2006;43:181–8.

    Article  CAS  PubMed  Google Scholar 

  7. Shih MF, Chen LY, Tsai PJ, Cherng JY. In vitro and in vivo therapeutics of β-thujaplicin on LPS-induced inflammation in macrophages and septic shock in mice. Int J Immunopathol Pharmacol. 2012;25:39–48.

    Article  CAS  PubMed  Google Scholar 

  8. Liu S, Yamauchi H. p27-Associated G1 arrest induced by hinokitiol in human malignant melanoma cells is mediated via down-regulation of pRb, Skp2 ubiquitin ligase, and impairment of Cdk2 function. Cancer Lett. 2009;286:240–9.

    Article  CAS  PubMed  Google Scholar 

  9. Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev. 2007;59:645–66.

    Article  CAS  PubMed  Google Scholar 

  10. Ogawa N, Higashi K, Nagase H, Endo T, Moribe K, Loftsson T, Yamamoto K, Ueda H. Effects of cogrinding with β-cyclodextrin on the solid state fentanyl. J Pharm Sci. 2010;99:5019–29.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang JQ, Wu D, Jiang KM, Zhang D, Zheng X, Wan CP, Zhu HY, Xie XG, Jin Y, Lin J. Preparation, spectroscopy and molecular modelling studies of the inclusion complex of cordycepin with cyclodextrins. Carbohydr Res. 2015a;406:55–64.

    Article  PubMed  Google Scholar 

  12. Zhang JQ, Jiang KM, An K, Ren SH, Xie XG, Jin Y, Lin J. Novel water-soluble fisetin/cyclodextrins inclusion complexes: preparation, characterization, molecular docking and bioavailability. Carbohydr Res. 2015b;418:20–8.

    Article  CAS  PubMed  Google Scholar 

  13. Suzuki R, Inoue Y, Tsunoda Y, Murata I, Isshiki Y, Kondo S, Kanamoto I. Effect of γ-cyclodextrin derivative complexation on the physicochemical properties and antimicrobial activity of hinokitiol. J Incl Phenom Macrocycl Chem. 2015;83:177–86.

    Article  CAS  Google Scholar 

  14. Specogna E, Li KW, Djabourov M, Carn F, Bouchemal K. Dehydration, dissolution, and melting of cyclodextrin crystals. J Phys Chem B. 2015;119:1433–42.

    Article  CAS  PubMed  Google Scholar 

  15. Job P. Formation and stability of inorganic complexes in solution. Annales de Chimie et de Physique. 1928;9:113–203.

    CAS  Google Scholar 

  16. Higuchi T, Connors KA. Phase-solubility techniques. In: Reilly CN, editor. Advances in analytical chemistry and instrumentation, vol. 4. New York: Wiley-Interscience; 1965. p. 117–212.

    Google Scholar 

  17. Ge X, Huang Z, Tian S, Huang Y, Zeng C. Complexation of carbendazim with hydroxypropyl-β-cyclodextrin to improve solubility and fungicidal activity. Carbohydr Polym. 2012;89(1):208–12.

    Article  CAS  PubMed  Google Scholar 

  18. Ulatowski F, Dąbrowa K, Bałakier T, Jurczak J. Recognizing the limited applicability of job plots in studying host-guest interactions in supramolecular chemistry. J Org Chem. 2016;81(5):1746–56.

    Article  CAS  PubMed  Google Scholar 

  19. Negi JS, Singh S. Spectroscopic investigation on the inclusion complex formation between amisulpride and γ-cyclodextrin. Carbohydr Polym. 2013;92:1835–43.

    Article  CAS  PubMed  Google Scholar 

  20. Nguyen TA, Liu B, Zhao J, Thomas DS, Hook JM. An investigation into the supramolecular structure, solubility, stability and antioxidant activity of rutin/cyclodextrin inclusion complex. Food Chem. 2013;136:186–92.

    Article  CAS  PubMed  Google Scholar 

  21. Jug M, Kosalec I, Maestrelli F, Mura P. Analysis of triclosan inclusion complexes with β-cyclodextrin and its water-soluble polymeric derivative. J Pharm Biomed Anal. 2011;54:1030–9.

    Article  CAS  PubMed  Google Scholar 

  22. Xiao CF, Li K, Huang R, He GJ, Zhang JQ, Zhu L, Yang QY, Jiang KM, Jin Y, Lin J. Investigation of inclusion complex of epothilone A with cyclodextrins. Carbohydr Polym. 2014;102:297–305.

    Article  CAS  PubMed  Google Scholar 

  23. Giordano F, Novak C, Moyano JR. Thermal analysis of cyclodextrins and their inclusion compounds. Thermochim Acta. 2001;380:123–51.

    Article  CAS  Google Scholar 

  24. Nakai Y, Yamamoto K, Terada K, Kajiyama A, Sasaki I. Properties of crystal water of a-, β-, and γ-cyclodextrin. Chem Pharm Bull. 1986;34:2178–82.

    Article  CAS  Google Scholar 

  25. Inoue Y, Iohara D, Sekiya N, Yamamoto M, Ishida H, Sakiyama Y, Hirayama F, Arima H, Uekama K. Ternary inclusion complex formation and stabilization of limaprost, a prostaglandin E1 derivative, in the presence of α- and β-cyclodextrins in the solid state. Int J Pharm. 2016;509:338–47.

    Article  CAS  PubMed  Google Scholar 

  26. Aigner Z, Berkesi O, Farkas G, Szabó-Révész P. DSC, X-ray and FTIR studies of a gemfibrozil/dimethyl-β-cyclodextrin inclusion complex produced by co-grinding. J Pharm Biomed Anal. 2012;57:62–7.

    Article  CAS  PubMed  Google Scholar 

  27. Iwata M, Fukami T, Kawashima D, Sakai M, Furuishi T, Suzuki T, Tomono K, Ueda H. Effectiveness of mechanochemical treatment with cyclodextrins on increasing solubility of glimepiride. Pharmazie. 2009;64(6):390–4.

    CAS  PubMed  Google Scholar 

  28. Hunt MA, Rusa CC, Tonelli AE, Balik CM. Structure and stability of columnar cyclomaltohexaose (alpha-cyclodextrin) hydrate. Carbohydr Res. 2004;339(17):2805–10.

    Article  CAS  PubMed  Google Scholar 

  29. Karoyo AH, Sidhu P, Wilson LD, Hazendonk P. Characterization and dynamic properties for the solid inclusion complexes of β-cyclodextrin and perfluorooctanoic acid. J Phys Chem B. 2013;117(27):8269–82.

    Article  CAS  PubMed  Google Scholar 

  30. Breheret EF, Martin MM. Electronic relaxation of troponoids: tropolone fluorescence. J Lumin. 1978;17:49–60.

    Article  CAS  Google Scholar 

  31. MacKenziea VJ, Sinhaa HK, Wallaceb SC, Steera RP. Photophysics of tropolone. Chem Phys Lett. 1999;305:1–7.

    Article  Google Scholar 

  32. Fernandes CM, Teresa Vieira M, Veiga FJ. Physicochemical characterization and in vitro dissolution behavior of nicardipine-cyclodextrins inclusion compounds. Eur J Pharm Sci. 2002;15:79–88.

    Article  CAS  PubMed  Google Scholar 

  33. Takayanagi M, Ito S, Matsumoto K, Nagaoka M. Formation of reactant complex structure for initiation reaction of lactone ring-opening polymerization by cooperation of multiple cyclodextrin. J Phys Chem B. 2016;120(29):7174–81.

    Article  CAS  PubMed  Google Scholar 

  34. Mohamad S, Surikumaran H, Raoov M, Marimuthu T, Chandrasekaram K, Subramaniam P. Conventional study on novel dicationic ionic liquid inclusion with β-cyclodextrin. Int J Mol Sci. 2011;12:6329–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tárkányi G, Németh K, Mizsei R, Tőke O, Visy J, Simonyi M, Jicsinszky L, Szemán J, Szente L. Structure and stability of warfarin-sodium inclusion complexes formed with permethylated monoamino-β-cyclodextrin. J Pharm Biomed Anal. 2013;72:292–8.

    Article  PubMed  Google Scholar 

  36. Rudrangi SR, Bhomia R, Trivedi V, Vine GJ, Mitchell JC, Alexander BD, Wicks SR. Influence of the preparation method on the physicochemical properties of indomethacin and methyl-β-cyclodextrin complexes. Int J Pharm. 2015;479(2):381–90.

    Article  CAS  PubMed  Google Scholar 

  37. Graeser KA, Patterson JE. The role of configurational entropy in amorphous systems. Pharmaceutics. 2010;2(2):224–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou Q, Wei X, Dou W, Chou G, Wang Z. Preparation and characterization of inclusion complexes formed between baicalein and cyclodextrins. Carbohydr Polym. 2013;95(2):733–9.

    Article  CAS  PubMed  Google Scholar 

  39. Lis-Cieplak A, Sitkowski J, Kolodziejski W. Comparative proton nuclear magnetic resonance studies of amantadine complexes formed in aqueous solutions with three major cyclodextrins. J Pharm Sci. 2014;103:274–82.

    Article  CAS  PubMed  Google Scholar 

  40. Miletic T, Kyriakos K, Graovac A, Ibric S. Spray-dried voriconazole-cyclodextrin complexes: solubility, dissolution rate and chemical stability. Carbohydr Polym. 2013;98:122–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Cyclo Chem Co., Ltd. for the provision of α-CD and β-CD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Inoue.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, R., Inoue, Y., Limmatvapirat, S. et al. Molecular interactions of the inclusion complexes of hinokitiol and various cyclodextrins. AAPS PharmSciTech 18, 2717–2726 (2017). https://doi.org/10.1208/s12249-017-0748-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0748-7

KEY WORDS

Navigation