Skip to main content

Advertisement

Log in

Porous Inorganic Drug Delivery Systems—a Review

  • Review Article
  • Theme: Preparation of Nano and Micro-structures for Drug Delivery
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Innovative methods and materials have been developed to overcome limitations associated with current drug delivery systems. Significant developments have led to the use of a variety of materials (as excipients) such as inorganic and metallic structures, marking a transition from conventional polymers. Inorganic materials, especially those possessing significant porosity, are emerging as good candidates for the delivery of a range of drugs (antibiotics, anticancer and anti-inflammatories), providing several advantages in formulation and engineering (encapsulation of drug in amorphous form, controlled delivery and improved targeting). This review focuses on key selected developments in porous drug delivery systems. The review provides a short broad overview of porous polymeric materials for drug delivery before focusing on porous inorganic materials (e.g. Santa Barbara Amorphous (SBA) and Mobil Composition of Matter (MCM)) and their utilisation in drug dosage form development. Methods for their preparation and drug loading thereafter are detailed. Several examples of porous inorganic materials, drugs used and outcomes are discussed providing the reader with an understanding of advances in the field and realistic opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. Jonathan G, Karim A. 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm. 2016;499:376–94.

    Article  CAS  PubMed  Google Scholar 

  2. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, et al. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2:2–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ranade VV, Cannon JB. Drug delivery systems, Third Edition. Taylor & Francis; 2011.

  4. Muheem A, Shakeel F, Jahangir MA, Anwar M, Mallick N, Jain GK, et al. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J. 2014.

  5. Remington Essentials of Pharmaceutics—Felton, Linda 2012: Remington essentials of pharmaceutics—Felton, Linda 2012.

  6. Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems—an overview. Acta Pharm Sin B. 2013;3:361–72.

    Article  Google Scholar 

  7. Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine Nanotechnol Biol Med. 2005;1:193–212.

    Article  CAS  Google Scholar 

  8. Hartl M, Daemen L, Muhrer G. Water trapped in silica microspheres. Microporous Mesoporous Mater. 2012;161:7–13.

    Article  CAS  Google Scholar 

  9. Miyake Y, Ishida H, Tanaka S, Kolev SD. Theoretical analysis of the pseudo-second order kinetic model of adsorption. Application to the adsorption of Ag(I) to mesoporous silica microspheres functionalized with thiol groups. Chem Eng J. 2013;218:350–7.

    Article  CAS  Google Scholar 

  10. Dutta T, Agashe HB, Garg M, Balasubramanium P, Kabra M, Jain NK. Poly (propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro: research paper. J Drug Target. 2007;15:89–98.

    Article  CAS  PubMed  Google Scholar 

  11. Wiwattanapatapee R, Carreño-Gómez B, Malik N, Duncan R. Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm Res. 2000;17:991–8.

    Article  CAS  PubMed  Google Scholar 

  12. Lu J, Liong M, Zink JI, Tamanoi F. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small. 2007;3:1341–6.

    Article  CAS  PubMed  Google Scholar 

  13. Enayati M, Ahmad Z, Stride E, Edirisinghe M. One-step electrohydrodynamic production of drug-loaded micro- and nanoparticles. J R Soc Interface. 2010;7:667–75.

    Article  CAS  PubMed  Google Scholar 

  14. Shakeel F, Baboota S, Ahuja A, Ali J, Shafiq S. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion. J Nanobiotechnol. 2008;6:11.

    Article  CAS  Google Scholar 

  15. Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm. 2007;66:227–43.

    Article  CAS  PubMed  Google Scholar 

  16. Li X, Zhang Q, Ahmad Z, Huang J, Ren Z, Weng W, et al. Near-infrared luminescent CaTiO 3: Nd 3 nanofibers with tunable and trackable drug release kinetics. J Mater Chem B. 2015;3:7449–56.

    Article  CAS  Google Scholar 

  17. Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science. 2001;294:1684–8.

    Article  CAS  PubMed  Google Scholar 

  18. Kazunori K, Glenn SK, Masayuki Y, Teruo O, Yasuhisa S. Block copolymer micelles as vehicles for drug delivery. J Control Release. 1993;24:119–32.

    Article  Google Scholar 

  19. Haj-Ahmad RR, Elkordy AA, Chaw CS. In vitro characterisation of Span 65 niosomal formulations containing proteins. Curr Drug Deliv. 2015;12:628–39.

    Article  CAS  PubMed  Google Scholar 

  20. Guinedi AS, Mortada ND, Mansour S, Hathout RM. Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Int J Pharm. 2005;306:71–82.

    Article  CAS  PubMed  Google Scholar 

  21. Oberoi HS, Yorgensen YM, Morasse A, Evans JT, Burkhart DJ. PEG modified liposomes containing CRX-601 adjuvant in combination with methylglycol chitosan enhance the murine sublingual immune response to influenza vaccination. J Control Release. 2016;223:64–74.

    Article  CAS  PubMed  Google Scholar 

  22. Kaminski GAT, Sierakowski MR, Pontarolo R, Santos LA, Freitas RA. Layer-by-layer polysaccharide-coated liposomes for sustained delivery of epidermal growth factor. Carbohydr Polym. 2016;140:129–35.

    Article  CAS  PubMed  Google Scholar 

  23. El Maghraby GM, Ahmed AA, Osman MA. Penetration enhancers in proniosomes as a new strategy for enhanced transdermal drug delivery. Saudi Pharm J. 2015;23:67–74.

    Article  PubMed  Google Scholar 

  24. Yuksel N, Bayindir ZS, Aksakal E, Ozcelikay AT. In situ niosome forming maltodextrin proniosomes of candesartan cilexetil: in vitro and in vivo evaluations. Int J Biol Macromol. 2016;82:453–63.

    Article  CAS  PubMed  Google Scholar 

  25. Pillai O, Panchagnula R. Polymers in drug delivery. Curr Opin Chem Biol. 2001;5:447–51.

    Article  CAS  PubMed  Google Scholar 

  26. Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng. 2010;1:149–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vilar G, Tulla-Puche J, Albericio F. Polymers and drug delivery systems. Curr Drug Deliv. 2012;9:367–94.

    Article  CAS  PubMed  Google Scholar 

  28. Coelho JF, Ferreira PC, Alves P, Cordeiro R, Fonseca AC, Góis JR, et al. Drug delivery systems: advanced technologies potentially applicable in personalized treatments. EPMA J. 2010;1:164–209.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Porter CJ, Kaukonen AM, Taillardat‐Bertschinger A, Boyd BJ, O’Connor JM, Edwards GA, et al. Use of in vitro lipid digestion data to explain the in vivo performance of triglyceride‐based oral lipid formulations of poorly water‐soluble drugs: studies with halofantrine. J Pharm Sci. 2004;93:1110–21.

    Article  CAS  PubMed  Google Scholar 

  30. Goindi S, Kaur R, Kaur R. An ionic liquid-in-water microemulsion as a potential carrier for topical delivery of poorly water soluble drug: development, ex-vivo and in-vivo evaluation. Int J Pharm. 2015;495:913–23.

    Article  CAS  PubMed  Google Scholar 

  31. Lv D, Bai Z, Yang L, Li X, Chen X. Lipid emulsion reverses bupivacaine-induced apoptosis of h9c2 cardiomyocytes: PI3K/Akt/GSK-3β signaling pathway. Environ Toxicol Pharmacol. 2016;42:85–91.

    Article  CAS  PubMed  Google Scholar 

  32. Boakye CHA, Patel K, Singh M. Doxorubicin liposomes as an investigative model to study the skin permeation of nanocarriers. Int J Pharm. 2015;489:106–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Padois K, Cantiéni C, Bertholle V, Bardel C, Pirot F, Falson F. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil. Int J Pharm. 2011;416:300–4.

    CAS  PubMed  Google Scholar 

  34. Savic S, Tamburic S, Savic MM. From conventional towards new-natural surfactants in drug delivery systems design: current status and perspectives. Expert Opin Drug Deliv. 2010;7:353–69.

    Article  CAS  PubMed  Google Scholar 

  35. Tadros TF. Applied surfactants: principles and applications. Wiley; 2006.

  36. Lawrence MJ. Surfactant systems: their use in drug delivery. Chem Soc Rev. 1994;23:417–24.

    Article  CAS  Google Scholar 

  37. Smith EW, Maibach HI. Percutaneous penetration enhancers. Taylor & Francis; 1995.

  38. Dimitrijevic D, Lamandin CC, Uchegbu IF, Shaw AJ, Florence AT. The effect of monomers and of micellar and vesicular forms of non-ionic surfactants (Solulan C24 and Solulan 16) on Caco-2 cell monolayers. J Pharm Pharmacol. 1997;49:611–6.

    Article  CAS  PubMed  Google Scholar 

  39. Paul W. Ceramic drug delivery: a perspective. J Biomater Appl. 2003;17:253.

    Article  CAS  PubMed  Google Scholar 

  40. Arcos D, Vallet-Regí M. Bioceramics for drug delivery. Acta Mater. 2013;61:890–911.

    Article  CAS  Google Scholar 

  41. Sebastian M, Ninan N, Haghi AK. Nanomedicine and drug delivery. Apple Academic Press; 2012.

  42. Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano. 2008;2:889–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ahuja G, Pathak K. Porous carriers for controlled/modulated drug delivery. Indian J Pharm Sci. 2009;71:599–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Arruebo M. Drug delivery from structured porous inorganic materials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4:16–30.

    Article  CAS  PubMed  Google Scholar 

  45. Sher P, Ingavle G, Ponrathnam S, Pawar AP. Low density porous carrier: drug adsorption and release study by response surface methodology using different solvents. Int J Pharm. 2007;331:72–83.

    Article  CAS  PubMed  Google Scholar 

  46. Alcalá-Alcalá S, Benítez-Cardoza CG, Lima-Muñoz EJ, Piñón-Segundo E, Quintanar-Guerrero D. Evaluation of a combined drug-delivery system for proteins assembled with polymeric nanoparticles and porous microspheres; characterization and protein integrity studies. Int J Pharm. 2015;489:139–47.

    Article  PubMed  CAS  Google Scholar 

  47. Sun L, Zhou S, Wang W, Li X, Wang J, Weng J. Preparation and characterization of porous biodegradable microspheres used for controlled protein delivery. Colloids Surf Physicochem Eng Asp. 2009;345:173–81.

    Article  CAS  Google Scholar 

  48. Shi X, Jiang J, Sun L, Gan Z. Hydrolysis and biomineralization of porous PLA microspheres and their influence on cell growth. Colloids Surf B. 2011;85:73–80.

    Article  CAS  Google Scholar 

  49. Ehtezazi T, Washington C, Melia CD. First order release rate from porous PLA microspheres with limited exit holes on the exterior surface. J Control Release. 2000;66:27–38.

    Article  CAS  PubMed  Google Scholar 

  50. Son HY, Lee DJ, Lee JB, Park CH, Seo M, Jang J, et al. In situ functionalization of highly porous polymer microspheres with silver nanoparticles via bio-inspired chemistry. RSC Adv. 55604.

  51. Montaseri H, Sayyafan M, Tajerzadeh H. Preparation and characterization of poly-(methyl ethyl cyanoacrylate) particles containing 5-aminosalicylic acid. Iran J Pharm Res. 2010:21–7.

  52. Guo S, Yao T, Wang C, Zeng C, Zhang L. Preparation of monodispersed porous polyacrylamide microspheres via phase separation in microchannels. React Funct Polym. 2015;91–92:77–84.

    Article  CAS  Google Scholar 

  53. Rajkumar M, Bhise SB. Carbamazepine-loaded porous microspheres for short-term sustained drug delivery. J Young Pharm. 2010;2:7–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mi F, Shyu S, Chen C, Schoung J. Porous chitosan microsphere for controlling the antigen release of Newcastle disease vaccine: preparation of antigen-adsorbed microsphere and in vitro release. Biomaterials. 1999;20:1603–12.

    Article  CAS  PubMed  Google Scholar 

  55. Hou X, Wang X, Gao B, Yang J. Preparation and characterization of porous polysucrose microspheres. Carbohydr Polym. 2008;72:248–54.

    Article  CAS  Google Scholar 

  56. Akamatsu K, Maruyama K, Chen W, Nakao A, Nakao S. Drastic difference in porous structure of calcium alginate microspheres prepared with fresh or hydrolyzed sodium alginate. J Colloid Interface Sci. 2011;363:707–10.

    Article  CAS  PubMed  Google Scholar 

  57. Kwon MJ, Bae JH, Kim JJ, Na K, Lee ES. Long acting porous microparticle for pulmonary protein delivery. Int J Pharm. 2007;333:5–9.

    Article  CAS  PubMed  Google Scholar 

  58. Edwards DA, Hanes J, Caponetti G, Hrkach J, Ben-Jebria A, Eskew ML, et al. Large porous particles for pulmonary drug delivery. Science. 1997;276:1868–71.

    Article  CAS  PubMed  Google Scholar 

  59. Alcala-Alcala S, Urban-Morlan Z, Aguilar-Rosas I, Quintanar-Guerrero D. A biodegradable polymeric system for peptide-protein delivery assembled with porous microspheres and nanoparticles, using an adsorption/infiltration process. Int J Nanomedicine. 2013;8:2141–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kim TK, Yoon JJ, Lee DS, Park TG. Gas foamed open porous biodegradable polymeric microspheres. Biomaterials. 2006;27:152–9.

    Article  PubMed  CAS  Google Scholar 

  61. Sharma A, Khan S, Singhai A. Microsponges: a potential novel carrier. Pharma Sci Monit. 2014;5:93–7.

    CAS  Google Scholar 

  62. Kumar R, Sharma SK, Jaimini M, Alam N. Microsponge drug delivery systems for novel topical drug delivery. IJPSL. 2011;4:384–90.

    Google Scholar 

  63. Kaity S, Maiti S, Ghosh AK, Pal D, Ghosh A, Banerjee S. Microsponges: a novel strategy for drug delivery system. J Adv Pharm Technol Res. 2010;1:283–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Seo Y, Pant HR, Nirmala R, Lee J, Song KG, Kim HY. Fabrication of highly porous poly (ε-caprolactone) microfibers via electrospinning. J Porous Mater. 2012;19:217–23.

    Article  CAS  Google Scholar 

  65. Qi Z, Yu H, Chen Y, Zhu M. Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly (l-lactic acid). Mater Lett. 2009;63:415–8.

    Article  CAS  Google Scholar 

  66. McCann JT, Marquez M, Xia Y. Highly porous fibers by electrospinning into a cryogenic liquid. J Am Chem Soc. 2006;128:1436–7.

    Article  CAS  PubMed  Google Scholar 

  67. Hwang CM, Khademhosseini A, Park Y, Sun K, Lee S. Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering. Langmuir. 2008;24:6845–51.

    Article  CAS  PubMed  Google Scholar 

  68. Lin J, Ding B, Yu J. Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Appl Mater Interfaces. 2010;2:521–8.

    Article  CAS  PubMed  Google Scholar 

  69. van der Maaden K, Luttge R, Vos PJ, Bouwstra J, Kersten G, Ploemen I. Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays. Drug Deliv Transl Res. 2015;5:397–406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Park J, Choi S, Kamath R, Yoon Y, Allen MG, Prausnitz MR. Polymer particle-based micromolding to fabricate novel microstructures. Biomed Microdevices. 2007;9:223–34.

    Article  CAS  PubMed  Google Scholar 

  71. Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. 2010;62:83–99.

    Article  CAS  PubMed  Google Scholar 

  72. Yang S, Fu Y, Jeong SH, Park K. Application of poly (acrylic acid) superporous hydrogel microparticles as a super‐disintegrant in fast‐disintegrating tablets. J Pharm Pharmacol. 2004;56:429–36.

    Article  CAS  PubMed  Google Scholar 

  73. Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999;20:45–53.

    Article  CAS  PubMed  Google Scholar 

  74. Simões S, Figueiras A, Veiga F. Modular hydrogels for drug delivery. J Biomater Nanobiotechnol. 2012;3:185–99.

    Article  CAS  Google Scholar 

  75. Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49:1993–2007.

    Article  CAS  Google Scholar 

  76. Zhang LF, Yang DJ, Chen HC, Sun R, Xu L, Xiong ZC, et al. An ionically crosslinked hydrogel containing vancomycin coating on a porous scaffold for drug delivery and cell culture. Int J Pharm. 2008;353:74–87.

    Article  CAS  PubMed  Google Scholar 

  77. Tada D, Tanabe T, Tachibana A, Yamauchi K. Drug release from hydrogel containing albumin as crosslinker. J Biosci Bioeng. 2005;100:551–5.

    Article  CAS  PubMed  Google Scholar 

  78. Mastropietro DJ, Omidian H, Park K. Drug delivery applications for superporous hydrogels. Expert Opin Drug Deliv. 2012;9:71–89.

    Article  CAS  PubMed  Google Scholar 

  79. Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater. 2003;5:1–16.

    Article  CAS  PubMed  Google Scholar 

  80. Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials. 1996;17:93–102.

    Article  CAS  PubMed  Google Scholar 

  81. Marin E, Briceno MI, Caballero-George C. Critical evaluation of biodegradable polymers used in nanodrugs. Int J Nanomedicine. 2013;8:3071–90.

    PubMed  PubMed Central  Google Scholar 

  82. Coelho J. Drug delivery systems: advanced technologies potentially applicable in personalised treatment. Springer Science & Business Media; 2013.

  83. Markovsky E, Baabur-Cohen H, Eldar-Boock A, Omer L, Tiram G, Ferber S, et al. Administration, distribution, metabolism and elimination of polymer therapeutics. J Control Release. 2012;161:446–60.

    Article  CAS  PubMed  Google Scholar 

  84. Brinker CJ. Porous inorganic materials. Curr Opin Solid State Mater Sci. 1996;1:798–805.

    Article  CAS  Google Scholar 

  85. Pal N, Bhaumik A. Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic–inorganic hybrid and purely organic solids. Adv Colloid Interface Sci. 2013;189–190:21–41.

    Article  PubMed  CAS  Google Scholar 

  86. Vallet‐Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed. 2007;46:7548–58.

    Article  CAS  Google Scholar 

  87. Vallet‐Regí M. Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chem Eur J. 2006;12:5934–43.

    Article  PubMed  CAS  Google Scholar 

  88. Wang S. Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater. 2009;117:1–9.

    Article  CAS  Google Scholar 

  89. Song S, Hidajat K, Kawi S. Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix-drug interactions. Langmuir. 2005;21:9568–75.

    Article  CAS  PubMed  Google Scholar 

  90. Heikkilä T, Salonen J, Tuura J, Hamdy MS, Mul G, Kumar N, et al. Mesoporous silica material TUD-1 as a drug delivery system. Int J Pharm. 2007;331:133–8.

    Article  PubMed  CAS  Google Scholar 

  91. Nishiwaki A, Watanabe A, Higashi K, Tozuka Y, Moribe K, Yamamoto K. Molecular states of prednisolone dispersed in folded sheet mesoporous silica (FSM-16). Int J Pharm. 2009;378:17–22.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang Y, Jiang T, Zhang Q, Wang S. Inclusion of telmisartan in mesocellular foam nanoparticles: drug loading and release property. Eur J Pharm Biopharm. 2010;76:17–23.

    Article  CAS  PubMed  Google Scholar 

  93. Popovici RF, Seftel EM, Mihai GD, Popovici E, Voicu VA. Controlled drug delivery system based on ordered mesoporous silica matrices of captopril as angiotensin-converting enzyme inhibitor drug. J Pharm Sci. 2011;100:704–14.

    Article  CAS  PubMed  Google Scholar 

  94. Doadrio AL, Sousa EMB, Doadrio JC, Pérez Pariente J, Izquierdo-Barba I, Vallet-Regí M. Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. J Control Release. 2004;97:125–32.

    Article  CAS  PubMed  Google Scholar 

  95. Manzano M, Aina V, Areán CO, Balas F, Cauda V, Colilla M, et al. Studies on MCM-41 mesoporous silica for drug delivery: effect of particle morphology and amine functionalization. Chem Eng J. 2008;137:30–7.

    Article  CAS  Google Scholar 

  96. Mellaerts R, Mols R, Jammaer JAG, Aerts CA, Annaert P, Van Humbeeck J, et al. Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica. Eur J Pharm Biopharm. 2008;69:223–30.

    Article  CAS  PubMed  Google Scholar 

  97. Zhao P, Wang L, Sun C, Jiang T, Zhang J, Zhang Q, et al. Uniform mesoporous carbon as a carrier for poorly water soluble drug and its cytotoxicity study. Eur J Pharm Biopharm. 2012;80:535–43.

    Article  CAS  PubMed  Google Scholar 

  98. Kim T. Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells. Nano Lett. 8:3724–7.

  99. Tang S, Huang X, Chen X, Zheng N. Hollow mesoporous zirconia nanocapsules for drug delivery. Adv Funct Mater. 2010;20:2442–7.

    Article  CAS  Google Scholar 

  100. Kapoor S, Hegde R, Bhattacharyya AJ. Influence of surface chemistry of mesoporous alumina with wide pore distribution on controlled drug release. J Control Release. 2009;140:34–9.

    Article  CAS  PubMed  Google Scholar 

  101. Borbane S, Pande V, Vibhute S, Kendre P, Dange V. Design and fabrication of ordered mesoporous alumina scaffold for drug delivery of poorly water soluble drug. Austin Ther. 2015;2:1015.

    Google Scholar 

  102. Gedda G, Pandey SS, Khan S, Talib A, Wu HF. Synthesis of mesoporous titanium oxide for control release and high efficiency drug delivery of vinorelbin bitartrate. RSC Adv. 2015;6:13145–51.

    Article  CAS  Google Scholar 

  103. Huang S, Li C, Cheng Z, Fan Y, Yang P, Zhang C, et al. Magnetic Fe3O4@mesoporous silica composites for drug delivery and bioadsorption. J Colloid Interface Sci. 2012;376:312–21.

    Article  CAS  PubMed  Google Scholar 

  104. Reddy MN, Cheralathan K, Sasikumar S. In vitro bioactivity and drug release kinetics studies of mesoporous silica-biopolymer composites. J Porous Mater. 2015;22:1465–72.

    Article  CAS  Google Scholar 

  105. Shahbazi M, Herranz B, Santos HA. Nanostructured porous Si-based nanoparticles for targeted drug delivery. Biomaterials. 2012;2:296–312.

    Google Scholar 

  106. Bharti C, Nagaich U, Pal AK, Gulati N. Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig. 2015;5:124–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vallet-Regí M, Balas F. Silica materials for medical applications. Open Biomed Eng J. 2008;2:1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zeng W, Qian X, Zhang Y, Yin J, Zhu Z. Organic modified mesoporous MCM-41 through solvothermal process as drug delivery system. Mater Res Bull. 2005;40:766–72.

    Article  CAS  Google Scholar 

  109. Beck J, Vartuli J, Roth WJ, Leonowicz M, Kresge C, Schmitt K, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc. 1992;114:10834–43.

    Article  CAS  Google Scholar 

  110. Hoffmann F, Cornelius M, Morell J, Fröba M. Silica‐based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed. 2006;45:3216–51.

    Article  CAS  Google Scholar 

  111. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc. 1998;120:6024–36.

    Article  CAS  Google Scholar 

  112. Giraldo L, López B, Pérez L, Urrego S, Sierra L, Mesa M. Mesoporous silica applications. Macromol Symp. 2007;258:129–41.

    Article  CAS  Google Scholar 

  113. Bagshaw SA, Prouzet E, Pinnavaia TJ. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science. 1995;269:1242–4.

    Article  PubMed  Google Scholar 

  114. Jansen J, Shan Z, Marchese L, Zhou W, Puil NVD, Maschmeyer T. A new templating method for three-dimensional mesopore networks. Chem Commun. 2001:713–4.

  115. Inagaki S, Koiwai A, Suzuki N, Fukushima Y, Kuroda K. Syntheses of highly ordered mesoporous materials, FSM-16, derived from Kanemite. Bull Chem Soc Jpn. 1996;69:1449–57.

    Article  CAS  Google Scholar 

  116. Uejo F, Limwikrant W, Moribe K, Yamamoto K. Dissolution improvement of fenofibrate by melting inclusion in mesoporous silica. Asian J Pharmacol. 2013;8:329–35.

    Google Scholar 

  117. Horcajada P, Ramila A, Perez-Pariente J, Vallet-Regí M. Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater. 2004;68:105–9.

    Article  CAS  Google Scholar 

  118. Lee C, Cheng S, Huang I, Souris JS, Yang C, Mou C, et al. Intracellular pH‐responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. Angew Chem. 2010;122:8390–5.

    Article  Google Scholar 

  119. Ambrogi V, Perioli L, Marmottini F, Giovagnoli S, Esposito M, Rossi C. Improvement of dissolution rate of piroxicam by inclusion into MCM-41 mesoporous silicate. Eur J Pharm Sci. 2007;32:216–22.

    Article  CAS  PubMed  Google Scholar 

  120. Cavallaro G, Pierro P, Palumbo FS, Testa F, Pasqua L, Aiello R. Drug delivery devices based on mesoporous silicate. Drug Deliv. 2004;11:41–6.

    Article  CAS  PubMed  Google Scholar 

  121. Heikkilä T, Salonen J, Tuura J, Kumar N, Salmi T, Murzin DY, et al. Evaluation of mesoporous TCPSi, MCM-41, SBA-15, and TUD-1 materials as API carriers for oral drug delivery. Drug Deliv. 2007;14:337–47.

    Article  PubMed  CAS  Google Scholar 

  122. Vallet-Regi M, Ramila A, Del Real R, Pérez-Pariente J. A new property of MCM-41: drug delivery system. Chem Mater. 2001;13:308–11.

    Article  CAS  Google Scholar 

  123. He Q, Shi J. Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J Mater Chem. 2011;21:5845–55.

    Article  CAS  Google Scholar 

  124. Van Speybroeck M, Mellaerts R, Martens JA, Annaert P, Van den Mooter G, Augustijns P. Ordered mesoporous silica for the delivery of poorly soluble drugs. Controlled release in oral drug delivery: Springer; 2011. p 203–19.

  125. Zhang C, Hou T, Chen J, Wen L. Preparation of mesoporous silica microspheres with multi-hollow cores and their application in sustained drug release. Particuology. 2010;8:447–52.

    Article  CAS  Google Scholar 

  126. Mao C, Wang F, Cao B. Controlling nanostructures of mesoporous silica fibers by supramolecular assembly of genetically modifiable bacteriophages. Angew Chem. 2012;124:6517–21.

    Article  Google Scholar 

  127. Sathe TR, Agrawal A, Nie S. Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. Anal Chem. 2006;78:5627–32.

    Article  CAS  PubMed  Google Scholar 

  128. Ahern RJ, Crean AM, Ryan KB. The influence of supercritical carbon dioxide (SC-CO2) processing conditions on drug loading and physicochemical properties. Int J Pharm. 2012;439:92–9.

    Article  CAS  PubMed  Google Scholar 

  129. Mellaerts R, Aerts CA, Van Humbeeck J, Augustijns P, Van den Mooter G, Martens JA. Enhanced release of itraconazole from ordered mesoporous SBA-15 silica materials. Chem Commun. 2007:1375–7.

  130. Zhang Y, Wang J, Bai X, Jiang T, Zhang Q, Wang S. Mesoporous silica nanoparticles for increasing the oral bioavailability and permeation of poorly water soluble drugs. Mol Pharm. 2012;9:505–13.

    Article  CAS  PubMed  Google Scholar 

  131. Nafisi S, Schäfer-Korting M, Maibach HI. Perspectives on percutaneous penetration: silica nanoparticles. Nanotoxicology. 2015;9:643–57.

    Article  CAS  PubMed  Google Scholar 

  132. Berlier G, Gastaldi L, Ugazio E, Miletto I, Iliade P, Sapino S. Stabilization of quercetin flavonoid in MCM-41 mesoporous silica: positive effect of surface functionalization. J Colloid Interface Sci. 2013;393:109–18.

    Article  CAS  PubMed  Google Scholar 

  133. Berlier G, Gastaldi L, Sapino S, Miletto I, Bottinelli E, Chirio D, et al. MCM-41 as a useful vector for rutin topical formulations: synthesis, characterization and testing. Int J Pharm. 2013;457:177–86.

    Article  CAS  PubMed  Google Scholar 

  134. Gastaldi L, Ugazio E, Sapino S, Iliade P, Miletto I, Berlier G. Mesoporous silica as a carrier for topical application: the Trolox case study. Phys Chem Chem Phys. 2012;14:11318–26.

    Article  CAS  PubMed  Google Scholar 

  135. Ambrogi V, Perioli L, Marmottini F, Latterini L, Rossi C, Costantino U. Mesoporous silicate MCM-41 containing organic ultraviolet ray absorbents: preparation, photostability and in vitro release. J Phys Chem Solids. 2007;68:1173–7.

    Article  CAS  Google Scholar 

  136. Chen-Yang YW, Chen YT, Li CC, Yu HC, Chuang YC, Su JH, et al. Preparation of UV-filter encapsulated mesoporous silica with high sunscreen ability. Mater Lett. 2011;65:1060–2.

    Article  CAS  Google Scholar 

  137. Ambrogi V, Perioli L, Pagano C, Marmottini F, Moretti M, Mizzi F, et al. Econazole nitrate‐loaded MCM‐41 for an antifungal topical powder formulation. J Pharm Sci. 2010;99:4738–45.

    Article  CAS  PubMed  Google Scholar 

  138. Lu J, Liong M, Li Z, Zink JI, Tamanoi F. Biocompatibility, biodistribution, and drug‐delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010;6:1794–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Xue Z, Liang D, Li Y, Long Z, Pan Q, Liu X, et al. Silica nanoparticle is a possible safe carrier for gene therapy. Chin Sci Bull. 2005;50:2323–7.

    Article  CAS  Google Scholar 

  140. Lee C, Lo L, Mou C, Yang C. Synthesis and characterization of positive‐charge functionalized mesoporous silica nanoparticles for oral drug delivery of an anti‐inflammatory drug. Adv Funct Mater. 2008;18:3283–92.

    Article  CAS  Google Scholar 

  141. Hu C, Yu L, Zheng Z, Wang J, Liu Y, Jiang Y, et al. Tannin as a gatekeeper of pH-responsive mesoporous silica nanoparticles for drug delivery. RSC Adv. 2015;5:85436–41.

    Article  CAS  Google Scholar 

  142. Barrabino A. Synthesis of mesoporous silica particles with control of both pore diameter and particle size. Master thesis. Chalmers University of Technology. 2011.

  143. Kresge C, Leonowicz M, Roth W, Vartuli J, Beck J. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–2.

    Article  CAS  Google Scholar 

  144. Cicuéndez M, Izquierdo-Barba I, Portolés MT, Vallet-Regí M. Biocompatibility and levofloxacin delivery of mesoporous materials. Eur J Pharm Biopharm. 2013;84:115–24.

    Article  PubMed  CAS  Google Scholar 

  145. He Q, Shi J, Zhu M, Chen Y, Chen F. The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. Microporous Mesoporous Mater. 2010;131:314–20.

    Article  CAS  Google Scholar 

  146. Cauda V, Schlossbauer A, Bein T. Bio-degradation study of colloidal mesoporous silica nanoparticles: effect of surface functionalization with organo-silanes and poly(ethylene glycol). Microporous Mesoporous Mater. 2010;132:60–71.

    Article  CAS  Google Scholar 

  147. He Q, Zhang Z, Gao Y, Shi J, Li Y. Intracellular localization and cytotoxicity of spherical mesoporous silica nano‐and microparticles. Small. 2009;5:2722–9.

    Article  CAS  PubMed  Google Scholar 

  148. Zhai W, He C, Wu L, Zhou Y, Chen H, Chang J, et al. Degradation of hollow mesoporous silica nanoparticles in human umbilical vein endothelial cells. J Biomed Mater Res B Appl Biomater. 2012;100:1397–403.

    Article  PubMed  CAS  Google Scholar 

  149. Chen G, Teng Z, Su X, Liu Y, Lu G. Unique biological degradation behavior of Stöber mesoporous silica nanoparticles from their interiors to their exteriors. J Biomed Nanotechnol. 2015;11:722–9.

    Article  CAS  PubMed  Google Scholar 

  150. Kumar R, Roy I, Ohulchanskky TY, Vathy LA, Bergey EJ, Sajjad M, et al. In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano. 2010;4:699–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. He Q, Zhang Z, Gao F, Li Y, Shi J. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small. 2011;7:271–80.

    Article  CAS  PubMed  Google Scholar 

  152. Charnay C, Bégu S, Tourné-Péteilh C, Nicole L, Lerner DA, Devoisselle JM. Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property. Eur J Pharm Biopharm. 2004;57:533–40.

    Article  CAS  PubMed  Google Scholar 

  153. Shen S, Ng WK, Chia L, Dong Y, Tan RB. Stabilized amorphous state of ibuprofen by co‐spray drying with mesoporous SBA‐15 to enhance dissolution properties. J Pharm Sci. 2010;99:1997–2007.

    Article  CAS  PubMed  Google Scholar 

  154. Lu J, Liong M, Sherman S, Xia T, Kovochich M, Nel AE, et al. Mesoporous silica nanoparticles for cancer therapy: energy-dependent cellular uptake and delivery of paclitaxel to cancer cells. Nanobiotechnology. 2007;3:89–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Vallet-Regí M, Doadrio JC, Doadrio AL, Izquierdo-Barba I, Pérez-Pariente J. Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin. Solid State Ionics. 2004;172:435–9.

    Article  CAS  Google Scholar 

  156. Izquierdo-Barba I, Martinez Á, Doadrio AL, Pérez-Pariente J, Vallet-Regí M. Release evaluation of drugs from ordered three-dimensional silica structures. Eur J Pharm Sci. 2005;26:365–73.

    Article  CAS  PubMed  Google Scholar 

  157. Hong S, Shen S, Tan DCT, Ng WK, Liu X, Chia LS, et al. High drug load, stable, manufacturable and bioavailable fenofibrate formulations in mesoporous silica: a comparison of spray drying versus solvent impregnation methods. Drug Deliv. 2016;23:316–27.

    Article  CAS  PubMed  Google Scholar 

  158. Waters LJ, Hussain T, Parkes G, Hanrahan JP, Tobin JM. Inclusion of fenofibrate in a series of mesoporous silicas using microwave irradiation. Eur J Pharm Biopharm. 2013;85:936–41.

    Article  CAS  PubMed  Google Scholar 

  159. Lebold T. Nanostructured silica materials as drug-delivery systems for doxorubicin: single molecule and cellular studies. Nano Lett. 2009;9:2877–83.

    Article  CAS  PubMed  Google Scholar 

  160. Rosenholm JM, Peuhu E, Bate‐Eya LT, Eriksson JE, Sahlgren C, Lindén M. Cancer‐cell‐specific induction of apoptosis using mesoporous silica nanoparticles as drug‐delivery vectors. Small. 2010;6:1234–41.

    Article  CAS  PubMed  Google Scholar 

  161. Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T, et al. Co‐delivery of doxorubicin and Bcl‐2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug‐resistant cancer cells. Small. 2009;5:2673–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Meng H, Mai WX, Zhang H, Xue M, Xia T, Lin S, et al. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano. 2013;7:994–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gary-Bobo M, Hocine O, Brevet D, Maynadier M, Raehm L, Richeter S, et al. Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int J Pharm. 2012;423:509–15.

    Article  CAS  PubMed  Google Scholar 

  164. Halamová D, Badaničová M, Zeleňák V, Gondová T, Vainio U. Naproxen drug delivery using periodic mesoporous silica SBA-15. Appl Surf Sci. 2010;256:6489–94.

    Article  CAS  Google Scholar 

  165. Radin S, Chen T, Ducheyne P. The controlled release of drugs from emulsified, sol gel processed silica microspheres. Biomaterials. 2009;30:850–8.

    Article  CAS  PubMed  Google Scholar 

  166. Izquierdo-Barba I, Ruiz-González L, Doadrio JC, González-Calbet JM, Vallet-Regí M. Tissue regeneration: a new property of mesoporous materials. Solid State Sci. 2005;7:983–9.

    Article  CAS  Google Scholar 

  167. Horcajada P, Rámila A, Boulahya K, González-Calbet J, Vallet-Regí M. Bioactivity in ordered mesoporous materials. Solid State Sci. 2004;6:1295–300.

    Article  CAS  Google Scholar 

  168. Vallet-Regí M, Ruiz-González L, Izquierdo-Barba I, González-Calbet JM. Revisiting silica based ordered mesoporous materials: medical applications. J Mater Chem. 2006;16:26–31.

    Article  Google Scholar 

  169. Shadjou N, Hasanzadeh M. Bone tissue engineering using silica-based mesoporous nanobiomaterials: recent progress. Mater Sci Eng C. 2015;55:401–9.

    Article  CAS  Google Scholar 

  170. Vallet-Regí M, Izquierdo-Barba I, Rámila A, Pérez-Pariente J, Babonneau F, González-Calbet JM. Phosphorous-doped MCM-41 as bioactive material. Solid State Sci. 2005;7:233–7.

    Article  CAS  Google Scholar 

  171. Mortera R, Onida B, Fiorilli S, Cauda V, Brovarone CV, Baino F, et al. Synthesis and characterization of MCM-41 spheres inside bioactive glass–ceramic scaffold. Chem Eng J. 2008;137:54–61.

    Article  CAS  Google Scholar 

  172. Luo Z, Deng Y, Zhang R, Wang M, Bai Y, Zhao Q, et al. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering. Colloids Surf B. 2015;131:73–82.

    Article  CAS  Google Scholar 

  173. Hartono SB, Yu M, Gu W, Yang J, Strounina E, Wang X, et al. Synthesis of multi-functional large pore mesoporous silica nanoparticles as gene carriers. Nanotechnology. 2014;25:055701.

    Article  PubMed  CAS  Google Scholar 

  174. Kim M, Na H, Kim Y, Ryoo S, Cho HS, Lee KE, et al. Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano. 2011;5:3568–76.

    Article  CAS  PubMed  Google Scholar 

  175. Slowing II, Vivero-Escoto JL, Wu C, Lin VS. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60:1278–88.

    Article  CAS  PubMed  Google Scholar 

  176. Hartono SB, Phuoc NT, Yu M, Jia Z, Monteiro MJ, Qiao S, et al. Functionalized large pore mesoporous silica nanoparticles for gene delivery featuring controlled release and co-delivery. J Mater Chem B. 2014;2:718–26.

    Article  CAS  Google Scholar 

  177. Mamaeva V, Sahlgren C, Lindén M. Mesoporous silica nanoparticles in medicine—recent advances. Adv Drug Deliv Rev. 2013;65:689–702.

    Article  CAS  PubMed  Google Scholar 

  178. Brevet D, Hocine O, Delalande A, Raehm L, Charnay C, Midoux P, et al. Improved gene transfer with histidine-functionalized mesoporous silica nanoparticles. Int J Pharm. 2014;471:197–205.

    Article  CAS  PubMed  Google Scholar 

  179. Na H, Kim M, Park K, Ryoo S, Lee KE, Jeon H, et al. Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores. Small. 2012;8:1752–61.

    Article  CAS  PubMed  Google Scholar 

  180. Qian KK, Suib SL, Bogner RH. Spontaneous crystalline‐to‐amorphous phase transformation of organic or medicinal compounds in the presence of porous media, part 2: amorphization capacity and mechanisms of interaction. J Pharm Sci. 2011;100:4674–86.

    Article  CAS  PubMed  Google Scholar 

  181. Limnell T, Santos HA, Mäkilä E, Heikkilä T, Salonen J, Murzin DY, et al. Drug delivery formulations of ordered and nonordered mesoporous silica: comparison of three drug loading methods. J Pharm Sci. 2011;100:3294–306.

    Article  CAS  PubMed  Google Scholar 

  182. Ahern RJ, Hanrahan JP, Tobin JM, Ryan KB, Crean AM. Comparison of fenofibrate–mesoporous silica drug-loading processes for enhanced drug delivery. Eur J Pharm Sci. 2013;50:400–9.

    Article  CAS  PubMed  Google Scholar 

  183. Ivanov S, Zhuravsky S, Yukina G, Tomson V, Korolev D, Galagudza M. In vivo toxicity of intravenously administered silica and silicon nanoparticles. Materials. 2012;5:1873–89.

    Article  CAS  Google Scholar 

  184. Petushkov A, Ndiege N, Salem AK, Larsen SC. Toxicity of silica nanomaterials: zeolites, mesoporous silica, and amorphous silica nanoparticles. Adv Mol Tox. 2010;4:223–66.

    Article  CAS  Google Scholar 

  185. Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater. 2012;24:1504–34.

    Article  CAS  PubMed  Google Scholar 

  186. Slowing II, Wu C, Vivero‐Escoto JL, Lin VS. Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small. 2009;5:57–62.

    Article  CAS  PubMed  Google Scholar 

  187. Malvindi MA, Brunetti V, Vecchio G, Galeone A, Cingolani R, Pompa PP. SiO2 nanoparticles biocompatibility and their potential for gene delivery and silencing. Nanoscale. 2012;4:486–95.

    Article  CAS  PubMed  Google Scholar 

  188. Napierska D, Thomassen LC, Rabolli V, Lison D, Gonzalez L, Kirsch‐Volders M, et al. Size‐dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small. 2009;5:846–53.

    Article  CAS  PubMed  Google Scholar 

  189. Di Pasqua AJ, Sharma KK, Shi Y, Toms BB, Ouellette W, Dabrowiak JC, et al. Cytotoxicity of mesoporous silica nanomaterials. J Inorg Biochem. 2008;102:1416–23.

    Article  PubMed  CAS  Google Scholar 

  190. Tao Z, Morrow MP, Asefa T, Sharma KK, Duncan C, Anan A, et al. Mesoporous silica nanoparticles inhibit cellular respiration. Nano Lett. 2008;8:1517–26.

    Article  CAS  PubMed  Google Scholar 

  191. Fu C, Liu T, Li L, Liu H, Chen D, Tang F. The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials. 2013;34:2565–75.

    Article  CAS  PubMed  Google Scholar 

  192. Luo G, Chen W, Liu Y, Lei Q, Zhuo R, Zhang X. Multifunctional enveloped mesoporous silica nanoparticles for subcellular co-delivery of drug and therapeutic peptide. Sci Rep. 2014;4:1–10.

    Google Scholar 

  193. Zhu C, Wang X, Lin Z, Xie Z, Wang X. Cell microenvironment stimuli-responsive controlled-release delivery systems based on mesoporous silica nanoparticles. J Food Drug Anal. 2014;22:18–28.

    Article  CAS  PubMed  Google Scholar 

  194. Jia L, Li Z, Shen J, Zheng D, Tian X, Guo H, et al. Multifunctional mesoporous silica nanoparticles mediated co-delivery of paclitaxel and tetrandrine for overcoming multidrug resistance. Int J Pharm. 2015;489:318–30.

    Article  CAS  PubMed  Google Scholar 

  195. Ma J, Lin H, Xing R, Li X, Bian C, Xiang D, et al. Synthesis of pH-responsive mesoporous silica nanotubes for controlled release. J Sol Gel Sci Technol. 2014;69:364–9.

    Article  CAS  Google Scholar 

  196. Bernardos A, Aznar E, Marcos MD, Martínez‐Máñez R, Sancenón F, Soto J, et al. Enzyme‐responsive controlled release using mesoporous silica supports capped with lactose. Angew Chem. 2009;121:5998–6001.

    Article  Google Scholar 

  197. Sun R, Wang W, Wen Y, Zhang X. Recent advance on mesoporous silica nanoparticles-based controlled release system: intelligent switches open up new horizon. Nanomaterials. 2015;5:2019–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Minia University represented by Egyptian Culture Centre and Educational Bureau in London. The authors would also like to thank the EPSRC (EPSRC EHDA Network) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Ahmad.

Additional information

Guest Editors: Dr. Z Ahmad and Prof. M Edirisinghe

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayed, E., Haj-Ahmad, R., Ruparelia, K. et al. Porous Inorganic Drug Delivery Systems—a Review. AAPS PharmSciTech 18, 1507–1525 (2017). https://doi.org/10.1208/s12249-017-0740-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0740-2

KEY WORDS

Navigation