Skip to main content

Advertisement

Log in

Galactose-Containing Polymer-DOX Conjugates for Targeting Drug Delivery

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

A novel multifunctional drug delivery system was fabricated by conjugating galactose-based polymer, methoxy-poly(ethylene glycol)-block-poly(6-O-methacryloyl-D-galactopyranose) (mPEG-b-PMAGP) with doxorubicin (DOX) via an acid-labile carbamate linkage. The mPEG-b-PMAGP-co-DOX nanoparticles were spherical in shape, and the diameter determined by dynamic light scattering (DLS) was 54.84 ± 0.58 nm, larger than that characterized by transmission electron microscopy (TEM). The in vitro drug release profiles were studied, and the release of DOX from the nanoparticles was pH-responsive. The cellular uptake behavior of free-DOX and mPEG-b-PMAGP-co-DOX nanoparticles by asialoglycoprotein (ASGP) receptor-positive cancer cell line (HepG2) and ASGP receptor-negative cancer cell lines (MCF-7 and A549 cells) was evaluated by confocal laser scanning microscopy (CLSM) and flow cytometry (FCM), respectively. The mPEG-b-PMAGP-co-DOX nanoparticles which contain galactose functional groups exhibited higher cellular uptake behavior via ASGP receptor-mediated endocytosis in HepG2 cells than in other two cancer cells. The in vitro cytotoxicity assay manifested that the mPEG-b-PMAGP-co-DOX nanoparticles exhibited higher anticancer efficacy against HepG2 cells than MCF-7 cells. These results indicated that the multifunctional mPEG-b-PMAGP-co-DOX nanoparticles possessing pH-responsible and hepatoma-targeting function have great potential to be used as a targeting drug delivery system for hepatoma therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang X, Grailer JJ, Rowland LJ, Javadi A, Hurley SA, Matson VZ, et al. Multifunctional stable and pH responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging. ACS Nano. 2010;4:6805–17.

    Article  CAS  PubMed  Google Scholar 

  2. Lee YH, Park SY, Mok H, Park TG. Synthesis, characterization, antitumor activity of pluronic mimicking copolymer micelles conjugated with doxorubicin via acid-cleavable linkage. Bioconjugate Chem. 2008;19:525–31.

    Article  CAS  Google Scholar 

  3. Dharap SS, Wang Y, Chandna P, Khandare JJ, Qiu B, Gunaseelan S, et al. Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. PNAS. 2005;102:12962–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fu F, Wu Y, Zhu J, Wen S, Shen M, Shi X. Multifunctional lactobionic acid-modified dendrimers for targeted drug delivery to liver cancer cells: investigating the role played by PEG spacer. ACS Appl Mater Interfaces. 2014;6:16416–25.

    Article  CAS  PubMed  Google Scholar 

  5. Ma S, Zhou J, Wali AR, He Y, Xu X, Tang JZ, et al. Self-assembly of pH-sensitive fluorinated peptide dendron functionalized dextran nanoparticles for on-demand intracellular drug delivery. J Mater Sci Mater Med. 2015;26:5550.

    Google Scholar 

  6. Chen KJ, Chaung EY, Wey SP, He Y, Xu X, Tang JZ, et al. Hyperthermia-mediated local drug delivery by a bubble-generating liposomal system for tumor-specific chemotherapy. ACS Nano. 2014;8:5105–15.

    Article  CAS  PubMed  Google Scholar 

  7. Luo Z, Ding X, Hu Y, Wu S, Xiang Y, Zeng Y, et al. Engineering hollow nanocontainer platform with multifunctional molecular machines for tumor-targeted therapy in vitro and in vivo. ACS Nano. 2013;7:10271–84.

    Article  CAS  PubMed  Google Scholar 

  8. Duan X, Xiao J, Yin Q, Zhang Z, Yu H, Mao S, et al. Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS Nano. 2013;7:5858–69.

    Article  CAS  PubMed  Google Scholar 

  9. Liu M, Huang G, Cong Y, Tong G, Lin Z, Yin Y, et al. The preparation and characterization of micelles from poly(γ-glutamic acid)-graft-poly(L-lactide) and the cellular uptake thereof. J Mater Sci Mater Med. 2015;26:187.

    Article  PubMed  Google Scholar 

  10. Wei M, Guo X, Tu L, Zou Q, Li Q, Tang C, et al. Lactoferrin-modified PEGylated liposomes loaded with doxorubicin for targeting delivery to hepatocellular carcinoma. Int J Nanomedicine. 2015;10:5123–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Feng W, Nie W, He C, Zhou X, Chen L, Qiu K, et al. Effect of pH-responsive alginate/chitosan multilayers coating on delivery efficiency, cellular uptake andbiodistribution of mesoporous silica nanoparticles based nanocarriers. ACS Appl Mater Interfaces. 2014;6:8447–60.

    Article  CAS  PubMed  Google Scholar 

  12. Wang Z, Ma G, Zhang J, Lin W, Ji F, Bernards MT, et al. Development of zwitterionic polymer-based doxorubicin conjugates: tuning the surface charge to prolong the circulation and reduce toxicity. Langmuir. 2014;30:3764–74.

    Article  CAS  PubMed  Google Scholar 

  13. Hu X, Liu S, Huang Y, Chen X, Jing X. Biodegradable block copolymer-doxorubicin conjugates via different linkages: preparation, characterization, and in vitro evaluation. Biomacromolecules. 2010;11:2094–102.

    Article  CAS  PubMed  Google Scholar 

  14. Chan JM, Zhang L, Yuet KP, Liao G, Rhee JW, Langer R, et al. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials. 2009;30:1627–34.

    Article  CAS  PubMed  Google Scholar 

  15. Jung B, Jeong YC, Min JH, Kim JE, Song YJ, Park JK, et al. Tumor-binding prodrug micelles of polymer-drug conjugates for anticancer therapy in HeLa cells. J Mater Chem. 2012;22:9385–94.

    Article  CAS  Google Scholar 

  16. Jin C, Qian N, Zhao W, Yang W, Bai L, Wu H, et al. Improved therapeutic effect of DOX-PLGA-PEG micelles decorated with bivalent fragment HAb18 F(ab′)2 for hepatocellular carcinoma. Biomacromolecules. 2010;11:2422–31.

    Article  CAS  PubMed  Google Scholar 

  17. Ulbrich K, Etrych T, Chytil P, Jelínková M, Ríhová B. Antibody-targeted polymer-doxorubicin conjugates with pH-controlled activation. J Drug Target. 2004;12:477–89.

    Article  CAS  PubMed  Google Scholar 

  18. Tu Y, Zhu L. Enhancing cancer targeting and anticancer activity by a stimulus-sensitive multifunctional polymer-drug conjugate. J Control Release. 2015;212:94–102.

    Article  CAS  PubMed  Google Scholar 

  19. Shamay Y, Paulin D, Ashkenasy G, David A. E-selectin binding peptide-polymer-drug conjugates and their selective cytotoxicity against vascular endothelial cells. Biomaterials. 2009;30:6460–8.

    Article  CAS  PubMed  Google Scholar 

  20. Liu T, Li X, Qian Y, Hu X, Liu S. Multifunctional pH-disintegrable micellar nanoparticles of asymmetrically functionalized b-cyclodextrin-based star copolymer covalently conjugated with doxorubicin and DOTA-Gd moieties. Biomaterials. 2012;33:2521–31.

    Article  CAS  PubMed  Google Scholar 

  21. Fu C, Li H, Li N, Miao X, Xie M, Du W, et al. Conjugating an anticancer drug onto thiolated hyaluronic acid by acid lable hydrazone linkage for its gelation and dual stimuli-response release. Carbohydr Polym. 2015;128:163–70.

    Article  CAS  PubMed  Google Scholar 

  22. Luo Y, Bernshaw NJ, Lu ZR, Kopecek J, Prestwich GD. Targeted delivery of doxorubicin by HPMA copolymer-hyaluronan bioconjugates. Pharm Res. 2002;19:396–402.

    Article  CAS  PubMed  Google Scholar 

  23. Pawar SK, Badhwar AJ, Kharas F, Khandare JJ, Vavia PR. Design, synthesis and evaluation of N-acetyl glucosamine (NAG)-PEG-doxorubicin targeted conjugates for anticancer delivery. Int J Pharm. 2012;436:183–93.

    Article  CAS  PubMed  Google Scholar 

  24. Tsai WB, Lai HY, Lee JL, Lo CW, Chen WS. Enhancement of the cytotoxicity and selectivity of doxorubicin to hepatoma cells by synergistic combination of galactose-decorated γ-poly(glutamic acid) nanoparticles and low-intensity ultrasound. Langmuir. 2014;30:5510–7.

    Article  CAS  PubMed  Google Scholar 

  25. Duncan R. Development of HPMA copolymer-anticancer conjugates: clinical experience and lessons learnt. Adv Drug Deliv Rev. 2009;61:1131–48.

    Article  CAS  PubMed  Google Scholar 

  26. Lv J, Sun H, Zou Y, Lo CW, Chen WS. Reductively degradable α-amino acid-based poly-(ester amide)-graft-galactose copolymers: facile synthesis, self-assembly, and hepatoma-targeting doxorubicin delivery. Biomater Sci. 2015;3:1134–46.

    Article  CAS  PubMed  Google Scholar 

  27. Ding YY, Han JT, Tian BC, Han J, Zhang J, Zheng H, et al. Hepatoma-targeting and pH-sensitive nanocarriers based on a novel D-galactopyranose copolymer for efficient drug delivery. Int J Pharm. 2014;477:187–96.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Hong CY, Pan CY. Galactose-based amphiphilic block copolymers: synthesis, micellization, and bioapplication. Biomacromolecules. 2013;14:1444–51.

    Article  CAS  PubMed  Google Scholar 

  29. Thapa B, Kumar P, Zeng H, Narain R. Asialoglycoprotein receptor-mediated gene delivery to hepatocytes using galactosylated polymers. Biomacromolecules. 2015;16:3008–20.

    Article  CAS  PubMed  Google Scholar 

  30. Sarika PR, James NR, Nishna N, Anil Kumar PR, Raj DK. Galactosylated pullulan-curcumin conjugate micelles for site specific anticancer activity to hepatocarcinoma cells. Colloids Surf B: Biointerfaces. 2015;133:347–55.

    Article  CAS  PubMed  Google Scholar 

  31. Hu FQ, Zhang YY, You J, Anil Kumar PR, Raj DK. pH triggered doxorubicin delivery of PEGylated glycolipid conjugate micelles for tumor targeting therapy. Mol Pharm. 2012;9:2469–78.

    Article  CAS  PubMed  Google Scholar 

  32. Duhem N, Danhier F, Pourcelle V, Schumers JM, Bertrand O, Leduff CS, et al. Self-assembling doxorubicin-tocopherol succinate prodrug as a new drug delivery system: synthesis, characterization, and in vitro and in vivo anticancer activity. Bioconjugate Chem. 2014;25:72–81.

    Article  CAS  Google Scholar 

  33. Du JZ, Du XJ, Mao CQ, Wang J. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc. 2011;133:17560–3.

    Article  CAS  PubMed  Google Scholar 

  34. Chen X, Parelkar SS, Henchey E, Schneider S, Emrick T. PolyMPC-doxorubicin prodrugs. Bioconjugate Chem. 2012;23:1753–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Shandong Provincial Natural Science Foundation, China (ZR2014HM096, ZR2013EMQ008, ZR2015HL123); Project of Medical and Health Science and Technology Development Program in Shandong Province (2014WS0484); and Science and Technology Plan Project of colleges and universities in Shandong Province (J14LM51).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingtian Han.

Additional information

Yujie Sun and Jing Zhang are co-first authors.

Yujie Sun and Jing Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhang, J., Han, J. et al. Galactose-Containing Polymer-DOX Conjugates for Targeting Drug Delivery. AAPS PharmSciTech 18, 749–758 (2017). https://doi.org/10.1208/s12249-016-0557-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0557-4

KEY WORDS

Navigation