Skip to main content
Log in

Comparative Studies on Chitosan and Polylactic-co-glycolic Acid Incorporated Nanoparticles of Low Molecular Weight Heparin

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This study was performed to test the feasibility of chitosan and polylactic-co-glycolic acid (PLGA) incorporated nanoparticles as sustained-release carriers for the delivery of negatively charged low molecular weight heparin (LMWH). Fourier transform infrared (FTIR) spectrometry was used to evaluate the interactions between chitosan and LMWH. The shifts, intensity, and broadening of the characteristic peaks for the functional groups in the FTIR spectra indicated that strong interactions occur between the positively charged chitosans and the negatively charged LMWHs. Three types of LMWH nanoparticles (NP-1, NP-2, and NP-3) were prepared using chitosan with or without PLGA: NP-1 nanoparticles were formed by polyelectrolyte complexation after single mixing, NP-2 nanoparticles were prepared by polyelectrolyte complexation after single emulsion–diffusion–evaporation, and NP-3 nanoparticles were optimized by double emulsion–diffusion–evaporation. NP-3 nanoparticles of LMWH prepared by the emulsion–diffusion–evaporation method showed significant differences in particle morphology, size, zeta potential, and drug release profile compared to NP-1 nanoparticles formed by polyelectrolyte complexation. Another ionic complex of LMWH with chitosan-incorporated PLGA nanoparticles (NP-2) showed lower drug entrapment efficiency than that of NP-1 and NP-3. The drug release rate of NP-3 was slower than the release rates of NP-1 and NP-2, although particle morphology of NP-3 was similar to that of NP-2. Cell viability was not adversely affected when cells were treated with all three types of nanoparticles. The data presented in this study demonstrate that nanoparticles formulated with chitosan–PLGA could be a safe sustained-release carrier for the delivery of LMWH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7:771–82. doi:10.1038/nrd2614.

    Article  PubMed  CAS  Google Scholar 

  2. Tan ML, Choong PF, Dass CR. Cancer, chitosan nanoparticles and catalytic nucleic acids. J Pharm Pharmacol. 2009;61:3–12. doi:10.1211/jpp/61.01.0002.

    Article  PubMed  CAS  Google Scholar 

  3. Prabaharan M, Mano JF. Chitosan-based particles as controlled drug delivery systems. Drug Deliv. 2004;12:41–57. doi:10.1080/10717540590889781.

    Article  Google Scholar 

  4. Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev. 2010;62:12–27. doi:10.1016/j.addr.2009.08.004.

    Article  PubMed  CAS  Google Scholar 

  5. Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed. 2006;17:247–89.

    Article  PubMed  CAS  Google Scholar 

  6. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly(d,l-lactide-co-glycolide) and its derivatives. J Control Release. 2008;125:193–209. doi:10.1016/j.jconrel.2007.09.013.

    Article  PubMed  CAS  Google Scholar 

  7. Govender T, Stolnik S, Garnett MC, Illum L, Davis SS. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release. 1999;57:171–85.

    Article  PubMed  CAS  Google Scholar 

  8. Barichello JM, Morishita M, Takayama K, Nagai T. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm. 1999;25:471–6. doi:10.1081/DDC-100102197.

    Article  PubMed  CAS  Google Scholar 

  9. Suarez S, O’Hara P, Kazantseva M, Newcomer CE, Hopfer R, McMurray DN, et al. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: screening in an infectious disease model. Pharm Res. 2001;18:1315–9.

    Article  PubMed  CAS  Google Scholar 

  10. Dailey LA, Jekel N, Fink L, Gessler T, Schmehl T, Wittmar M, et al. Investigation of the proinflammatory potential of biodegradable nanoparticle drug delivery systems in the lung. Toxicol Appl Pharmacol. 2006;215:100–8. doi:10.1016/j.taap.2006.01.016.

    Article  PubMed  CAS  Google Scholar 

  11. Katas H, Cevher E, Alpar HO. Preparation of polyethyleneimine incorporated poly(d,l-lactide-co-glycolide) nanoparticles by spontaneous emulsion diffusion method for small interfering RNA delivery. Int J Pharm. 2009;369:144–54. doi:10.1016/j.ijpharm.2008.10.012.

    Article  PubMed  CAS  Google Scholar 

  12. Taetz S, Nafee N, Beisner J, Piotrowska K, Baldes C, Murdter TE, et al. The influence of chitosan content in cationic chitosan/PLGA nanoparticles on the delivery efficiency of antisense 2′-O-methyl-RNA directed against telomerase in lung cancer cells. Eur J Pharm Biopharm. 2009;72:358–69. doi:10.1016/j.ejpb.2008.07.011.

    Article  PubMed  CAS  Google Scholar 

  13. Ungaro F, di Villa d’Emmanuele BR, Giovino C, Miro A, Sorrentino R, Quaglia F, et al. Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: in vivo deposition and hypoglycaemic activity after delivery to rat lungs. J Control Release. 2009;135:25–34. doi:10.1016/j.jconrel.2008.12.011.

    Article  PubMed  CAS  Google Scholar 

  14. Amoozgar Z, Park J, Lin Q, Yeo Y. Low molecular-weight chitosan as a pH-sensitive stealth coating for tumor-specific drug delivery. Mol Pharm. 2012;9(5):1262–70. doi:10.1021/mp2005615.

    PubMed  CAS  Google Scholar 

  15. Hou Y, Hu J, Park H, Lee M. Chitosan-based nanoparticles as a sustained protein release carrier for tissue engineering applications. J Biomed Mater Res A. 2012;100:939–47. doi:10.1002/jbm.a.34031.

    PubMed  Google Scholar 

  16. Zhang X, Sun M, Zheng A, Cao D, Bi Y, Sun J. Preparation and characterization of insulin-loaded bioadhesive PLGA nanoparticles for oral administration. Eur J Pharm Sci. 2012;45:632–8. doi:10.1016/j.ejps.2012.01.002.

    Article  PubMed  CAS  Google Scholar 

  17. Nandagiri VK, Gentile P, Chiono V, Tonda-Turo C, Matsiko A, Ramtoola Z, et al. Incorporation of PLGA nanoparticles into porous chitosan-gelatin scaffolds: influence on the physical properties and cell behavior. J Mech Behav Biomed Mater. 2011;4:1318–27. doi:10.1016/j.jmbbm.2011.04.019.

    Article  PubMed  CAS  Google Scholar 

  18. Zeng P, Xu Y, Zeng C, Ren H, Peng M. Chitosan-modified poly(d,l-lactide-co-glycolide) nanospheres for plasmid DNA delivery and HBV gene-silencing. Int J Pharm. 2011;415:259–66. doi:10.1016/j.ijpharm.2011.05.053.

    Article  PubMed  CAS  Google Scholar 

  19. Fareed J, Jeske W, Hoppensteadt D, Clarizio R, Walenga JM. Low-molecular-weight heparins: pharmacologic profile and product differentiation. Am J Cardiol. 1998;82:3L–10L.

    Article  PubMed  CAS  Google Scholar 

  20. Kleinschmidt K, Charles R. Pharmacology of low molecular weight heparins. Emerg Med Clin North Am. 2001;19:1025–49.

    Article  PubMed  CAS  Google Scholar 

  21. Bai S, Ahsan F. Synthesis and evaluation of pegylated dendrimeric nanocarrier for pulmonary delivery of low molecular weight heparin. Pharm Res. 2009;26:539–48. doi:10.1007/s11095-008-9769-y.

    Article  PubMed  CAS  Google Scholar 

  22. Bai S, Ahsan F. Inhalable liposomes of low molecular weight heparin for the treatment of venous thromboembolism. J Pharm Sci. 2010;99:4554–64. doi:10.1002/jps.22160.

    Article  PubMed  CAS  Google Scholar 

  23. Bai S, Gupta V, Ahsan F. Cationic liposomes as carriers for aerosolized formulations of an anionic drug: safety and efficacy study. Eur J Pharm Sci. 2009;38:165–71. doi:10.1016/j.ejps.2009.07.002.

    Article  PubMed  CAS  Google Scholar 

  24. Bai S, Gupta V, Ahsan F. Inhalable lactose-based dry powder formulations of low molecular weight heparin. J Aerosol Med Pulm Drug Deliv. 2010;23:97–104. doi:10.1089/jamp.2009.0745.

    Article  PubMed  CAS  Google Scholar 

  25. Bai S, Thomas C, Ahsan F. Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low-molecular weight heparin. J Pharm Sci. 2007;96:2090–106. doi:10.1002/jps.20849.

    Article  PubMed  CAS  Google Scholar 

  26. Yang T, Hussain A, Bai S, Khalil IA, Harashima H, Ahsan F. Positively charged polyethylenimines enhance nasal absorption of the negatively charged drug, low molecular weight heparin. J Control Release. 2006;115:289–97. doi:10.1016/j.jconrel.2006.08.015.

    Article  PubMed  CAS  Google Scholar 

  27. Yang T, Mustafa F, Bai S, Ahsan F. Pulmonary delivery of low molecular weight heparins. Pharm Res. 2004;21:2009–16.

    Article  PubMed  CAS  Google Scholar 

  28. Paliwal R, Paliwal SR, Agrawal GP, Vyas SP. Chitosan nanoconstructs for improved oral delivery of low molecular weight heparin: in vitro and in vivo evaluation. Int J Pharm. 2012;422:179–84. doi:10.1016/j.ijpharm.2011.10.048.

    Article  PubMed  CAS  Google Scholar 

  29. He J, Zhou Z, Fan Y, Zhou X, Du H. Sustained release of low molecular weight heparin from PLGA microspheres prepared by a solid-in-oil-in-water emulsion method. J Microencapsul. 2011;28:763–70. doi:10.3109/02652048.2011.629740.

    Article  PubMed  CAS  Google Scholar 

  30. Thomas C, Gupta V, Ahsan F. Particle size influences the immune response produced by hepatitis B vaccine formulated in inhalable particles. Pharm Res. 2010;27:905–19. doi:10.1007/s11095-010-0094-x.

    Article  PubMed  CAS  Google Scholar 

  31. Sun W, Mao S, Mei D, Kissel T. Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and enoxaparin. Eur J Pharm Biopharm. 2008;69:417–25. doi:10.1016/j.ejpb.2008.01.016.

    Article  PubMed  CAS  Google Scholar 

  32. Rawat A, Majumder QH, Ahsan F. Inhalable large porous microspheres of low molecular weight heparin: in vitro and in vivo evaluation. J Control Release. 2008;128:224–32. doi:10.1016/j.jconrel.2008.03.013.

    Article  PubMed  CAS  Google Scholar 

  33. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  PubMed  CAS  Google Scholar 

  34. Markovich RJ, Pidgeon C. Introduction to Fourier transform infrared spectroscopy and applications in the pharmaceutical sciences. Pharm Res. 1991;8:663–75.

    Article  PubMed  CAS  Google Scholar 

  35. Kaur G, Rana V, Jain S, Tiwary AK. Colon delivery of budesonide: evaluation of chitosan-chondroitin sulfate interpolymer complex. AAPS PharmSciTech. 2010;11:36–45. doi:10.1208/s12249-009-9353-8.

    Article  PubMed  CAS  Google Scholar 

  36. Liu Z, Jiao Y, Liu F, Zhang Z. Heparin/chitosan nanoparticle carriers prepared by polyelectrolyte complexation. J Biomed Mater Res A. 2007;83:806–12. doi:10.1002/jbm.a.31407.

    PubMed  Google Scholar 

  37. Ravi Kumar MNV, Bakowsky U, Lehr CM. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials. 2004;25:1771–7. doi:10.1016/j.biomaterials.2003.08.069.

    Article  PubMed  CAS  Google Scholar 

  38. Awotwe-Otoo D, Zidan AS, Rahman Z, Habib MJ. Evaluation of anticancer drug-loaded nanoparticle characteristics by nondestructive methodologies. AAPS PharmSciTech. 2012;13:611–22. doi:10.1208/s12249-012-9782-7.

    Article  PubMed  CAS  Google Scholar 

  39. Braun CS, Vetro JA, Tomalia DA, Koe GS, Koe JG, Middaugh CR. Structure/function relationships of polyamidoamine/DNA dendrimers as gene delivery vehicles. J Pharm Sci. 2005;94:423–36.

    Article  PubMed  CAS  Google Scholar 

  40. Wilhelm P, Stephan D. On-line tracking of the coating of nanoscaled silica with titania nanoparticles via zeta-potential measurements. J Colloid Interface Sci. 2006;293:88–92. doi:10.1016/j.jcis.2005.06.047.

    Article  PubMed  CAS  Google Scholar 

  41. Yang R, Yang SG, Shim WS, Cui F, Cheng G, Kim IW, et al. Lung-specific delivery of paclitaxel by chitosan-modified PLGA nanoparticles via transient formation of microaggregates. J Pharm Sci. 2009;98:970–84. doi:10.1002/jps.21487.

    Article  PubMed  CAS  Google Scholar 

  42. Wu J, Ding D, Ren G, Xu X, Yin X, Hu Y. Sustained delivery of endostatin improves the efficacy of therapy in Lewis lung cancer model. J Control Release. 2009;134:91–7. doi:10.1016/j.jconrel.2008.11.004.

    Article  PubMed  CAS  Google Scholar 

  43. Nair KL, Jagadeeshan S, Nair SA, Kumar GS. Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. Int J Nanomed. 2011;6:1685–97. doi:10.2147/IJN.S20165.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Drs. William Lindblad and Leslie Devaud for their valuable comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhua Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, T., Nyiawung, D., Silber, A. et al. Comparative Studies on Chitosan and Polylactic-co-glycolic Acid Incorporated Nanoparticles of Low Molecular Weight Heparin. AAPS PharmSciTech 13, 1309–1318 (2012). https://doi.org/10.1208/s12249-012-9854-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-012-9854-8

Key words

Navigation