Skip to main content
Log in

Design and In Vitro Haemolytic Evaluation of Cryptolepine Hydrochloride-Loaded Gelatine Nanoparticles as a Novel Approach for the Treatment of Malaria

AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Cryptolepine hydrochloride-loaded gelatine nanoparticles were developed and characterised as a means of exploring formulation techniques to improve the pharmaceutic profile of the compound. Cryptolepine hydrochloride-loaded gelatine-type (A) nanoparticles were developed base on the double desolvation approach. After optimisation of formulation parameters including temperature, stirring rate, incubation time polymer and cross-linker (glutaraldehyde) concentrations, the rest of the study was conducted at two different formulation pH values (2.5 and 11.0) and by two different approaches to drug loading. Three cryoprotectants—sucrose, glucose and mannitol—were investigated for possible use for the preparation of freeze-dried samples. Nanoparticles with desired size mostly less than 350 nm and zeta potential above ±20 were obtained when formulation pH was between 2.5 and 5 and above 9. Entrapment efficiency was higher at pH 11.0 than pH 2.5 and for products formulated when drug was loaded during the second desolvation stage compared to when drug was loaded onto pre-formed nanoparticles. Further investigation of pH effect showed a new isoelectric point of 6.23–6.27 at which the zeta potential of nanoparticles was zero. Sucrose and glucose were effective in low concentrations as cryoprotectants. The best formulation produced an EC50 value of 227.4 μM as a haemolytic agent compared to 51.61 μM by the free compound which is an indication of reduction in haemolytic side effect. There was sustained released of the compound from all formulation types over a period of 192 h. Stability data indicated that the nanosuspension and freeze-dried samples were stable at 4 and 25°C, respectively, over a 52-week period, but the former was less stable at room temperature. In conclusion, cryptolepine hydrochloride-loaded gelatine nanoparticles exhibited reduced haemolytic effect compared to the pure compound and can be developed further for parenteral delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature. 2005;434(7030):214–7.

    Article  PubMed  CAS  Google Scholar 

  2. Bierer DE, Fort DM, Mendez CD, Luo J, Imbach PA, Dubenko LG, et al. Ethnobotanical-directed discovery of the antihyperglycemic properties of cryptolepine: its isolation from Cryptolepis sanguinolenta, synthesis, and in vitro and in vivo activities. J Med Chem. 1998;41(6):894–901.

    Article  PubMed  CAS  Google Scholar 

  3. Jonckers THM, van Miert S, Cimanga K, Bailly C, Colson P, De Pauw-Gillet M-C, et al. Synthesis, cytotoxicity, and antiplasmodial and antitrypanosomal activity of new neocryptolepine derivatives. J Med Chem. 2002;45(16):3497–508.

    Article  PubMed  CAS  Google Scholar 

  4. Olajide OA, Ajayi AM, Wright CW. Anti-inflammatory properties of cryptolepine. Phytother Res. 2009;23(10):1421–5.

    Article  PubMed  CAS  Google Scholar 

  5. Onyeibor O, Croft SL, Dodson HI, Feiz-Haddad M, Kendrick H, Millington NJ, et al. Synthesis of some cryptolepine analogues, assessment of their antimalarial and cytotoxic activities, and consideration of their antimalarial mode of action. J Med Chem. 2005;48(7):2701–9.

    Article  PubMed  CAS  Google Scholar 

  6. Wright CW, Addae-Kyereme J, Breen AG, Brown JE, Cox MF, Croft SL, et al. Synthesis and evaluation of cryptolepine analogues for their potential as new antimalarial agents. J Med Chem. 2001;44(19):3187–94.

    Article  PubMed  CAS  Google Scholar 

  7. Ablordeppey SY, Fan P, Clark AM, Nimrod A. Probing the N-5 region of the indoloquinoline alkaloid, cryptolepine for anticryptococcal activity. Bioorg Med Chem. 1999;7(2):343–9.

    Article  PubMed  CAS  Google Scholar 

  8. Hawley SR, Bray PG, O’Neill PM, Park BK, Ward SA. The role of drug accumulation in 4-aminoquinoline antimalarial potency: the influence of structural substitution and physicochemical properties. Biochem Pharmacol. 1996;52(5):723–33.

    Article  PubMed  CAS  Google Scholar 

  9. Egan TJ, Hunter R, Kaschula CH, Marques HM, Misplon A, Walden J. Structure−function relationships in aminoquinolines: effect of amino and chloro groups on quinoline−hematin complex formation, inhibition of β-hematin formation, and antiplasmodial activity. J Med Chem. 1999;43(2):283–91.

    Article  Google Scholar 

  10. Ansah C, Gooderham NJ. The popular herbal antimalarial, extract of Cryptolepis sanguinolenta, is potently cytotoxic. Toxicol Sci. 2002;70(2):245–51.

    Article  PubMed  CAS  Google Scholar 

  11. Gibbons S, Fallah F, Wright CW. Cryptolepine hydrochloride: a potent antimycobacterial alkaloid derived from Cryptolepis sanguinolenta. Phytother Res. 2003;17(4):434–6.

    Article  PubMed  CAS  Google Scholar 

  12. Lavrado J, Paulo A, Gut J, Rosenthal PJ, Moreira R. Cryptolepine analogues containing basic aminoalkyl side-chains at C-11: synthesis, antiplasmodial activity, and cytotoxicity. Bioorg Med Chem Lett. 2008;18(4):1378–81.

    Article  PubMed  CAS  Google Scholar 

  13. Seville S, Phillips RM, Shnyder SD, Wright CW. Synthesis of cryptolepine analogues as potential bioreducible anticancer agents. Bioorg Med Chem. 2007;15(19):6353–60.

    Article  PubMed  CAS  Google Scholar 

  14. Singh M, Singh MP, Ablordeppey S. In vitro studies with liposomal cryptolepine. Drug Dev Ind Pharm. 1996;22(4):377–81.

    Article  CAS  Google Scholar 

  15. Fuse E, Kobayashi T, Inaba M, Sugiyama Y. Prediction of the maximal tolerated dose (MTD) and therapeutic effect of anticancer drugs in humans: integration of pharmacokinetics with pharmacodynamics and toxicodynamics. Cancer Treat Rev. 1995;21(2):133–57.

    Article  PubMed  CAS  Google Scholar 

  16. Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev. 2007;59(6):491–504.

    Article  PubMed  CAS  Google Scholar 

  17. Santos-Magalhães NS, Mosqueira VCF. Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev. 2010;62(4–5):560–75.

    Article  PubMed  Google Scholar 

  18. Greenwood BM, Fidock DA, Kyle DE, Kappe SHI, Alonso PL, Collins FH, et al. Malaria: progress, perils, and prospects for eradication. Ann Arbor: American Society for Clinical Investigation; 2008.

    Google Scholar 

  19. Francis SE, Sullivan DJ, Goldberg DE. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu Rev Microbiol. 1997;51(1):97–123.

    Article  PubMed  CAS  Google Scholar 

  20. Lim L, McFadden GI. The evolution, metabolism and functions of the apicoplast. Philos Trans R Soc B Biol Sci. 2010;365(1541):749–63.

    Article  CAS  Google Scholar 

  21. Spry C, Chai CLL, Kirk K, Saliba KJ. A class of pantothenic acid analogs inhibits Plasmodium falciparum pantothenate kinase and represses the proliferation of malaria parasites. Antimicrob Agents Chemother. 2005;49(11):4649–57.

    Article  PubMed  CAS  Google Scholar 

  22. Marsh K, Forster D, Waruiru C, Mwangi I, Winstanley M, Marsh V, et al. Indicators of life-threatening malaria in African children. N Engl J Med. 1995;332(21):1399–404.

    Article  PubMed  CAS  Google Scholar 

  23. Andrej T, Matjaz Jereb, Igor Muzlovic, Prabhu RM. Clinical review: severe malaria. Critical Care [serial on the Internet]. 2003; 7. Available from: http://ccforum.com/content/7/4/315

  24. Peter G, Manuel AL, Shetty A. Study comparing the clinical profile of complicated cases of Plasmodium falciparum malaria among adults and children. Asian Pac J Trop Dis. 2011;1(1):35–7.

    Article  Google Scholar 

  25. Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res. 1996;13(12):1838–45.

    Article  PubMed  CAS  Google Scholar 

  26. Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MNVR. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci. 2009;37(3–4):223–30.

    Article  PubMed  CAS  Google Scholar 

  27. Caliceti P, Veronese FM. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)–protein conjugates. Adv Drug Deliv Rev. 2003;55(10):1261–77.

    Article  PubMed  CAS  Google Scholar 

  28. Losa C, Marchal-Heussler L, Orallo F, Jato JLV, Alonso MJ. Design of new formulations for topical ocular administration: polymeric nanocapsules containing metipranolol. Pharm Res. 1993;10(1):80–7.

    Article  PubMed  CAS  Google Scholar 

  29. Cauchetier E, Paul M, Rivollet D, Fessi H, Astier A, Deniau M. Therapeutic evaluation of free and nanocapsule-encapsulated atovaquone in the treatment of murine visceral leishmaniasis. Ann Trop Med Parasitol. 2003;97:259–68.

    Article  PubMed  CAS  Google Scholar 

  30. Troger V, Fischel JL, Formento P, Gioanni J, Milano G. Effects of prolonged exposure to cisplatin on cytotoxicity and intracellular drug concentration. Eur J Cancer. 1992;28(1):82–6.

    Article  PubMed  CAS  Google Scholar 

  31. Mosqueira VCF, Loiseau PM, Bories C, Legrand P, Devissaguet J-P, Barratt G. Efficacy and pharmacokinetics of intravenous nanocapsule formulations of halofantrine in plasmodium Berghei-infected mice. Antimicrob Agents Chemother. 2004;48(4):1222–8.

    Article  PubMed  CAS  Google Scholar 

  32. Joshi M, Pathak S, Sharma S, Patravale V. Design and in vivo pharmacodynamic evaluation of nanostructured lipid carriers for parenteral delivery of artemether: Nanoject. Int J Pharm. 2008;364(1):119–26.

    Article  PubMed  CAS  Google Scholar 

  33. Bhadra D, Yadav AK, Bhadra S, Jain NK. Glycodendrimeric nanoparticulate carriers of primaquine phosphate for liver targeting. Int J Pharm. 2005;295(1–2):221–33.

    Article  PubMed  CAS  Google Scholar 

  34. Owais M, Varshney CG, Choudhury A, Chandra S, et al. Chloroquine encapsulated in malaria-infected erythrocyte-specific antibody-bearing liposomes effectively controls chloroquine-resistant Plasmodium Berghei infections in mice. Washington, DC: American Society for Microbiology; 1995.

    Google Scholar 

  35. Peeters PAM, de Leest K, Eling WMC, Crommelin DJA. Chloroquine blood levels after administration of the liposome-encapsulated drug in relation to therapy of murine malaria. Pharm Res. 1989;6(9):787–93.

    Article  PubMed  CAS  Google Scholar 

  36. Egan TJ, Ross DC, Adams PA. Quinoline anti-malarial drugs inhibit spontaneous formation of [beta]-haematin (malaria pigment). FEBS Lett. 1994;352(1):54–7.

    Article  PubMed  CAS  Google Scholar 

  37. Ofokansi K, Winter G, Fricker G, Coester C. Matrix-loaded biodegradable gelatin nanoparticles as new approach to improve drug loading and delivery. Eur J Pharm Biopharm. 2010;76(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  38. Berger CN, Le Donne P, Windemann H. Use of substances of animal origin in pharmaceutics and compliance with the TSE-risk guideline—a market survey. Biologicals. 2005;33(1):1–7.

    Article  PubMed  Google Scholar 

  39. Peano S, Reiner G, Carbonatto M, Bodenbender L, Boland P, Abel KJ. Determination of the clearance factor for transmissible spongiform encephalopathy agents during the manufacturing process of polygeline. Intensive Care Med. 2000;26(5):608–12.

    Article  PubMed  CAS  Google Scholar 

  40. Grobben AH, Steele PJ, Somerville RA, Taylor DM, Schreuder BEC. Inactivation of the BSE agent by the heat and pressure process for manufacturing gelatine. Vet Rec. 2005;157(10):277–81.

    PubMed  CAS  Google Scholar 

  41. Oppenheim RC, Stewart NF. The manufacture and tumour cell uptake of nanoparticles labelled with fluorescein isothiocyanate. Drug Dev Ind Pharm. 1979;5(6):563–71.

    Article  CAS  Google Scholar 

  42. Leo E, Angela VM, Cameroni R, Forni F. Doxorubicin-loaded gelatin nanoparticles stabilized by glutaraldehyde: involvement of the drug in the cross-linking process. Int J Pharm. 1997;155(1):75–82.

    Article  CAS  Google Scholar 

  43. Nahar M, Mishra D, Dubey V, Jain NK. Development, characterization, and toxicity evaluation of amphotericin B-loaded gelatin nanoparticles. Nanomedicine: Nanotechnol Biol Med. 2008;4(3):252–61.

    Article  CAS  Google Scholar 

  44. Coester C, Kreuter J, von Briesen H, Langer K. Preparation of avidin-labelled gelatin nanoparticles as carriers for biotinylated peptide nucleic acid (PNA). Int J Pharm. 2000;196(2):147–9.

    Article  PubMed  CAS  Google Scholar 

  45. Zillies JC, Zwiorek K, Hoffmann F, Vollmar A, Anchordoquy TJ, Winter G, et al. Formulation development of freeze-dried oligonucleotide-loaded gelatin nanoparticles. Eur J Pharm Biopharm. 2008;70(2):514–21.

    Article  PubMed  CAS  Google Scholar 

  46. Coester CJ, Langer K, Von Briesen H, Kreuter J. Gelatin nanoparticles by two step desolvation—a new preparation method, surface modifications and cell uptake. J Microencapsul. 2000;17(2):187–93.

    Article  PubMed  CAS  Google Scholar 

  47. Leo E, Cameroni R, Forni F. Dynamic dialysis for the drug release evaluation from doxorubicin–gelatin nanoparticle conjugates. Int J Pharm. 1999;180(1):23–30.

    Article  PubMed  CAS  Google Scholar 

  48. International Conference on Harmonization. Guidance to industries: ICH topic Q1A(R2) stability testing for new drug substances and products. Brussels: International Conference on Harmonization; 2003.

    Google Scholar 

  49. Kuntworbe N, Martini N, Brimble M, Alani GR, Al-Kassas R. Detection and quantification of the antimalarial compound cryptolepine by HPLC. Portland: Oregon Convention Centre; 2010 [cited Abstract number 699 04/08/2010]. Available from: https://www.controlledreleasesociety.org/customer/source/Meetings/PresentationFiles/4927-1.pdf.

  50. Salauze D, Decouvelaere D. In vitro assessment of the haemolytic potential of candidate drugs. Comp Haematol Int. 1994;4(1):34–6.

    Article  CAS  Google Scholar 

  51. Dalwadi G, Sunderland B. An ion pairing approach to increase the loading of hydrophilic and lipophilic drugs into PEGylated PLGA nanoparticles. Eur J Pharm Biopharm. 2009;71(2):231–42.

    Article  PubMed  CAS  Google Scholar 

  52. Salmaso S, Elvassore N, Bertucco A, Caliceti P. Production of solid lipid submicron particles for protein delivery using a novel supercritical gas-assisted melting atomization process. J Pharm Sci. 2009;98(2):640–50.

    Article  PubMed  CAS  Google Scholar 

  53. Larsen SW, Frost AB, Østergaard J, Marcher H, Larsen C. On the mechanism of drug release from oil suspensions in vitro using local anesthetics as model drug compounds. Eur J Pharm Sci. 2008;34(1):37–44.

    Article  PubMed  CAS  Google Scholar 

  54. D’Souza S, DeLuca P. Development of a dialysis in vitro release method for biodegradable microspheres. AAPS PharmSciTech. 2005;6(2):E323–8.

    Article  PubMed  Google Scholar 

  55. Goutelle S, Maurin M, Rougier F, Barbaut X, Bourguignon L, Ducher M, et al. The Hill equation: a review of its capabilities in pharmacological modelling. Fundam Clin Pharmacol. 2008;22(6):633–48.

    Article  PubMed  CAS  Google Scholar 

  56. Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release. 2005;109(1–3):256–74.

    Article  PubMed  CAS  Google Scholar 

  57. Tabata Y, Ikada Y. Protein release from gelatin matrices. Adv Drug Deliv Rev. 1998;31(3):287–301.

    Article  PubMed  CAS  Google Scholar 

  58. Bock TK, Müller BW. A novel assay to determine the hemolytic activity of drugs incorporated in colloidal carrier systems. Pharm Res. 1994;11(4):589–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

There is no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raida Al-Kassas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuntworbe, N., Al-Kassas, R. Design and In Vitro Haemolytic Evaluation of Cryptolepine Hydrochloride-Loaded Gelatine Nanoparticles as a Novel Approach for the Treatment of Malaria. AAPS PharmSciTech 13, 568–581 (2012). https://doi.org/10.1208/s12249-012-9775-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-012-9775-6

Key words

Navigation