Skip to main content
Log in

Effect of Oppositely Charged Polymer and Dissolution Media on Rheology of Spray-Dried Ionic Complexes

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this research was to address the utility of rheological study in understanding the influence of oppositely charged polymers on release of naproxen sodium encapsulated in chitosan particles. The interaction between oppositely charged κ-carrageenan (κ-Ca) and chitosan leads to relatively higher gel strength, which is proportional to the ability to retard the drug release at acidic pH. The oscillatory tests within the linear viscoelastic range where the stress is proportional to the applied strain were performed on the hydrated sample matrices containing chitosan-naproxen sodium spray-dried complexes and k-Ca or hydroxypropyl methylcellulose (HPMC) in various ratios. It was observed that the effect of pH change on the dynamic moduli in spray-dried complexes containing κ-Ca was much stronger than that with HPMC reflecting presence of strong ionic interaction between κ-Ca and chitosan. The combination of oppositely charged polymers in different ratios proved to be useful in modulating the rheological properties of the hydrated formulations and their release-retarding properties. Dynamic moduli can be used to measure gel strength and are significant for the interpretation of oral sustained release spray-dried complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Chitosan:

CH

Complex modulus:

G*

Complex viscosity:

η*

Compliance:

Ј

Degree Celsius:

°C

Drug release:

DR

Gel strength:

GS

Hertz:

Hz

Hour:

h

Hydroxypropyl methylcellulose:

HPMC K4

κ-Carrageenan:

κ-Ca

Linear viscoelasticity region:

LVR

Loss tangent:

Tan δ

Loss or viscous modulus:

G″

Milligrams:

mg

Milliliter:

ml

Millimeters:

mm

Naproxen sodium:

NS

NS-CH complex:

NSC

Oscillatory frequency sweep:

OFS

Oscillatory stress sweep:

OSS

Pascal:

Pa

Percentage:

%

Rotation per minute:

rpm

Seconds:

s

Spray dried:

SD

Storage or elastic modulus:

G′

US Pharmacopeia:

USP

Viscosity:

η

Volume/volume:

v/v

Weight/volume:

w/v

Weight/weight:

w/w

References

  1. Albano AA, Phuapradit W, Sandhu H, Shah NH. Stable complexes of poorly soluble compounds in ionic polymers. US Patent, 6350786 (2002). February 26.

    Google Scholar 

  2. Tapia C, Costa E, Sapag-Hagar J, Valenzuela F, Basualto C. Study of the influence of the pH media dissolution, degree of polymerization, and degree of swelling of the polymers on the mechanism of release of diltiazem from matrices based on the mixtures of chitosan/alginate. Drug Dev Ind Pharm. 2002;28:217–24. doi:10.1081/DDC-120002455.

    Article  CAS  PubMed  Google Scholar 

  3. Tapia C, Escobar Z, Costa E. Comparative studies polyelectrolyte complexes and mixtures of chitosan-alginate and chitosan-carrageenan as prolonged diltiazem clorhydrate release systems. Eur J Pharm Biopharm. 2004;57:65–75. doi:10.1016/S0939-6411(03)00153-X.

    Article  CAS  PubMed  Google Scholar 

  4. de la Torre PM, Enobakhare Y, Torrado S, Torrado S. Interpolymer complexes of poly(acrylic acid) and chitosan, influence of the ionic hydrogel forming medium. Biomaterials. 2003;24:1499–506. doi:10.1016/S0142-9612(02)00512-4.

    Article  PubMed  Google Scholar 

  5. Tomida H, Nakamura C, Kiryu S. A novel method for the preparation of controlled release theophylline capsules coated with a polyelectrolyte complex of κ-carrageenan and chitosan. Chem Pharm Bull (Tokyo). 1994;42:979–81.

    CAS  Google Scholar 

  6. Paula HCB, Gomes FJS, de Paula RCM. Swelling studies of chitosan/cashew nut gum physical gels. Carbohydr Polym. 2002;48:313–8. doi:10.1016/S0144-8617(01)00264-8.

    Article  CAS  Google Scholar 

  7. Rege PR, Shukla DJ, Block LH. Chitinosan-drug complexes: effect of electrolyte on naproxen release in vitro. Int J Pharm. 2003;250:259–72. doi:10.1016/S0378-5173(02)00551-3.

    Article  CAS  PubMed  Google Scholar 

  8. Iqbal Z, Babar A, Ashraf M. Controlled release naproxen using micronized ethylcellulose by wet granulation and solid dispersion method. Drug Dev Ind Pharm. 2002;28:129–34. doi:10.1081/DDC-120002445.

    Article  CAS  PubMed  Google Scholar 

  9. Bhise KS, Dhumal RD, Chauhan B, Paradkar AR, Kadam SS. Effect of oppositely charged polymer and dissolution medium on swelling, erosion and drug release from chitosan matrices. AAPS Pharmscitech. 2007;8(2):E1–92. doi:10.1208/PT 0802044.

    Article  Google Scholar 

  10. Bhise KS, Dhumal RS, Paradkar AR, Kadam SS. Effect of drying methods on swelling, erosion and drug release from chitosan– naproxen sodium complexes. AAPS Pharmscitech. 2008;9:1–12. doi:10.1208/S12249-007-9001-0.

    Article  PubMed  Google Scholar 

  11. Macosko CW. Rheology: principles, measurements and applications. New York: VCH Publishers; 1994.

    Google Scholar 

  12. Cheremisinoff NP. An introduction to polymer rheology and processing. Florida: CRC Press Inc; 1993. p. 107–29.

    Google Scholar 

  13. Abdellah A. Characterization of polymer blends using rheological methods. In: Simon GP, editor. Polymer characterization techniques and their applications to blends. Washington, D.C.: Oxford University Press; 2003. p. 370–98.

    Google Scholar 

  14. Barnes HA, Hutton JF, Walters K. An introduction to rheology. In: Rheology series, Vol. 3. Amsterdam: Elsevier; 1989.

  15. Burchard W, Ross-Murphy SB. Physical networks: polymers and gels. London: Elsevier Applied Science; 1990.

    Google Scholar 

  16. Caramella CM, Rossi S, Bonferoni MC. A rheological approach to explain the mucoadhesive behaviour of polymer hydrogels. In: Mathiowitz E, Chickering DE, Lehr CM, editors. Bioadhesive drug delivery systems, fundamentals, novel approaches and development. New York: Marcel Dekker; 1999. p. 25–66.

    Google Scholar 

  17. Cheng HS, Park H, Kelly P, Robinson JR. Bioadhesive polymers as platforms for oral controlled drug delivery II: synthesis and evaluation of some swelling, water-insoluble bioadhesive polymers. J Pharm Sci. 1985;74:399–405.

    Article  Google Scholar 

  18. Hemar Y, Hall CE, Munro PA, Singh H. Small and large deformation rheology and microstructure of κ-carrageenan gels containing commercial milk protein products. Int Dairy J. 2002;12:371–81.

    Article  CAS  Google Scholar 

  19. Bergera J, Reista M, Mayer JM, Felt O, Peppas NA, Gurny R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm. 2004;57:19–34.

    Article  Google Scholar 

  20. Caramella C, Bonferoni MC, Rossi S, Ferrari F. Rheological and tensile tests for the assessment of polymer–mucin interactions. Eur J Pharm Biopharm. 1994;40:213–7.

    CAS  Google Scholar 

  21. Barreiro-Iglesias R, Coronilla R, Concheiro A, Alvarez-Lorenzo C. Preparation of chitosan beads by simultaneous cross-linking/insolubilisation in basic pH, rheological optimisation and drug loading/release behaviour. Eur J Pharm Sci. 2005;24(1):77–84. doi:10.1016/J.Ejps.2004.09.013.

    Article  CAS  PubMed  Google Scholar 

  22. De La Orre PM, Enobakhare Y, Torrado S, Torrado S. Interpolymer complexes of poly(acrylic acid) and chitosan, influence of the ionic hydrogel forming medium. Biomaterials. 2003;24:1499–506. doi:10.1016/S0142-9612(02)00512-4.

    Article  Google Scholar 

  23. Fuongfuchat A, Jamieson AM, Blackwell J, Gerken TA. Rheological studies of the interaction of mucins with alginate and polyacrylate. Carbohydr Res. 1996;284:85–99.

    Article  CAS  PubMed  Google Scholar 

  24. Hagerstrom H, Paulsson M, Edsman K. Evaluation of mucoadhesion for two polyelectrolyte gels in simulated physiological condition using a rheological method. Eur J Pharm Sci. 2000;9:301–9.

    Article  CAS  PubMed  Google Scholar 

  25. Hassan EE, Gallo JM. A simple rheological method for the in vitro assessment of mucin-polymer bioadhesive bond strength. Pharm Res. 1990;7:491–5.

    Article  CAS  PubMed  Google Scholar 

  26. Keogh MK, Laine KI, O’Connor JF. Rheology of sodium caseinate-carrageenan mixtures. J Textural Studies. 1996;26(6):635–52.

    Article  Google Scholar 

  27. Ikeda S, Nishinari K. “Weak-Gel”-type rheological properties of aqueous dispersions of nonaggregated K-carrageenan helices. J Agric Food Chem. 2001;49:4436–41.

    Article  CAS  PubMed  Google Scholar 

  28. Montembault A, Viton C. Rheometric study of the gelation of chitosan in a hydroalcoholic medium. Eur Poly J. 2005;41(5):923–32. doi:10.1016/J.Biomaterials.2004.06.029.

    Article  Google Scholar 

  29. Oaken full D, Miyoshi E, Nishinari K, Scott A. Rheological and thermal properties of milk gels formed with κ-carrageenan and sodium caseinate. Food Hydrocoll. 1999;13:525–33.

    Article  CAS  Google Scholar 

  30. Shah AJ, Donovan MD. Rheological characterization of neutral and anionic polysaccharides with reduced mucociliary transport rates. AAPSPharmscitech. 2007;8(2):E40–47. doi:10.1208/Pt0802032.

    Google Scholar 

  31. Thorgeirsdottir TO, Kjoniksen A-L, Knudsen KD, Kristmundsdottir T, Nystrom B. Viscoelastic and structural properties of pharmaceutical hydrogels containing monocarpin. Eur J Pharm Biopharm. 2005;59:333–42.

    Article  CAS  PubMed  Google Scholar 

  32. Rudraraju VS, Wyandt CM. Rheology of microcrystalline cellulose and sodiumcarboxymethyl cellulose hydrogels using a controlled stress rheometer: part II. Int J Pharm. 2005;292:63–73. doi:10.1016/j.ijpharm.2004.10.012.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Divi Laboratories, Hyderabad; Marine chemicals Chennai; Colorcon Asia Pvt Ltd, Mumbai; and Signet chemicals, Mumbai, India, for the gift samples of naproxen sodium, chitosan, HPMC K4, and κ-carrageenan, respectively. R. S. Dhumal and S. Biradar are thankful to Council for Scientific and Industrial Research (CSIR), New Delhi, India, for providing financial support in the form of Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anant R. Paradkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhise, K.S., Dhumal, R.S., Shailesh, B. et al. Effect of Oppositely Charged Polymer and Dissolution Media on Rheology of Spray-Dried Ionic Complexes. AAPS PharmSciTech 11, 226–232 (2010). https://doi.org/10.1208/s12249-010-9379-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9379-y

Key words

Navigation