Skip to main content
Log in

The Role of l-arginine in Inclusion Complexes of Omeprazole with Cyclodextrins

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In this study, we investigate how the effect of l-arginine (ARG) and cyclodextrins upon omeprazole (OME) stability and solubility. The effect of the presence of ARG on the apparent stability constants (K1:1) of the inclusion complexes formed between OME and each cyclodextrin, β-cyclodextrin (βCD), and methyl-β-cyclodextrin (MβCD) is studied by phase solubility diagrams and nuclear magnetic resonance (NMR) spectroscopy. The interaction of OME with those cyclodextrins, in the presence of ARG, is characterized using NMR spectroscopy and molecular dynamics simulations. ARG significantly increases the drug solubility and complex stability, in comparison to inclusion complexes formed in its absence. The effect is more pronounced for the OME:βCD complex. ARG also contributes to a larger stability of OME when free in aqueous solution. The combination of ARG with cyclodextrins can represent an important tool to develop stable drug formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Karljikovic-Rajic K, Novovic D, Marinkovic V, Agbaba D. First-order UV-derivative spectrophometry in the analysis of omeprazole and pantoprazole sodium salt and corresponding impurities. J Pharm and Bio Anal. 2003;32:1019–27.

    Article  CAS  Google Scholar 

  2. Pérez-Ruiz T, Martínez-Lozano C, Sanz A, Bravo E, Galera R. Determination of omeprazole, hydroxyomeprazole and omeprazole sulfone using automated solid phase extraction and micellar electrokinetic capillary chromatography. J Pharm and Biom Anal. 2006;46:100–6.

    Article  Google Scholar 

  3. Markovic N, Agotonovic-Kustrin S, Glass B, Prestidge CA. Physical and thermal characterisation of chiral omeprazole sodium salts. J Pharm and Biom Anal. 2006;42:25–31.

    Article  CAS  Google Scholar 

  4. Min DS, Um KA, Kim YS, Park PW. Method for preparing enteric-coated oral drugs containing acid-unstable compounds., U.S. Patent, 1995.

  5. Salama F, El-Abasawy N, Abdel-Razeq SA, Ismail MMF, Fouad MM. Validation of the spectrophotometric determination of omeprazole and pantoprazole sodium via their metal chelates. J Pharm and Biom Anal. 2003;33:411–21.

    Article  CAS  Google Scholar 

  6. Shimizu M, Unoa T, Niioka T, Yaui-Furukori N, Takahata T, Sugawara K, Tateishi T. Sensitive determination of omeprazole and its two main metabolites in human plasma by column-switching high-performance liquid chromatography: application to pharmacokinetic study in relation to CYP2C19 genotypes. J Chromat B. 2006;832:241–8.

    Article  CAS  Google Scholar 

  7. Stroyer A, McGinity JW, Leopold CS. Solid state interactions between the proton pump inhibitor omeprazole and various enteric coating polymers. J Pharm Sci. 2005;95:1342–53.

    Article  Google Scholar 

  8. Nakagawa T, Immel S, Lichtenthaler FW, Lindner HJ. Topography of the 1:1 β-cyclodextrin–nitromethane inclusion complex. Carb Res. 2000;324:141–6.

    Article  CAS  Google Scholar 

  9. Liu Y, Chen G, Chen Y, Lin J. Inclusion complexes of azadirachtin with native and methylated cyclodextrins: solubilization and binding ability. Bioorg Med Chem. 2005;13:4037–42.

    Article  CAS  PubMed  Google Scholar 

  10. Loftsson T, Brewster ME, Másson M. Role of cyclodextrins in improving oral drug delivery. Am J Drug Deliv. 2004;2:1–15.

    Article  Google Scholar 

  11. Figueiras A, Sarraguça JMG, Carvalho RA, Pais AACC, Veiga FJB. Interaction of omeprazole with a methylated derivative of β-cyclodextrin: phase solubility, NMR spectroscopy and molecular simulation. Pharm Res. 2006;24:377–89.

    Article  PubMed  Google Scholar 

  12. Li J, Xiao H, Li J, Zhongb Y. Drug carrier systems based on water-soluble cationic β-cyclodextrin polymers. Int J Pharm. 2004;278:329–42.

    Article  CAS  PubMed  Google Scholar 

  13. Loftsson T. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci. 1996;85:1017–25.

    Article  CAS  PubMed  Google Scholar 

  14. Tirapegui C, Jara F, Guerrero J, Rezende MC. Host–guest interactions in cyclodextrin inclusion complexes with solvatochromic dyes. J Phys Org Chem. 2006;19:786–92.

    Article  CAS  Google Scholar 

  15. Fermeglia M, Ferrone M, Lodi A, Pricl S. Host–guest inclusion complexes between anticancer drugs and β-cyclodextrin: computational studies. Carbohydr Polym. 2003;53:15–44.

    Article  CAS  Google Scholar 

  16. Bea I, Jaime C, Kollman P. Molecular recognition by β-cyclodextrin derivatives: molecular dynamics, free-energy perturbation and molecular mechanics/Poisson–Boltzmann surface area goals and problems. Theor Chem Acc. 2002;108:286–92.

    CAS  Google Scholar 

  17. Haller J, Kaatze U. Octylglucopyranoside and cyclodextrin in water. Self-aggregation and complex formation. J Phys Chem B. 2009;113:1940–7.

    Article  CAS  PubMed  Google Scholar 

  18. Nilsson M, Valente AJM, Olofsson G, Söderman O, Bonini M. Thermodynamic and kinetic characterization of host–guest association between bolaform surfactants and α- and β-cyclodextrins. J Phys Chem B. 2008;112:11310–6.

    Article  CAS  PubMed  Google Scholar 

  19. Sellner B, Zifferer G, Kornherr A, Krois D, Brinker UH. Molecular dynamics simulations of β-cyclodextrin–aziadamantane complexes in water. J Phys Chem B. 2008;112:710–4.

    Article  CAS  PubMed  Google Scholar 

  20. Thompson DO. Cyclodextrins-enabling excipients: their present and future use in pharmaceuticals. Crit Rev Therap Drug Carr Syst. 1997;14:1–104.

    CAS  Google Scholar 

  21. Duchêne D, Wouessidjewe D. The current state of β-cyclodextrin in pharmaceutics. Acta Pharm Technol. 1990;36:1–6.

    Google Scholar 

  22. Mura P, Zerrouk N, Faucci MT, Maestrelli F, Chemtob C. Comparative study of ibuproxam complexation with amorphous beta-cyclodextrin derivatives in solution and in solid state. Eur J Pharm and Biopharm. 2002;54:181–91.

    Article  CAS  Google Scholar 

  23. Boulmedarat L, Bochot A, Lesieur S, Fattal E. Evaluation of buccal methyl-β-cyclodextrin toxicity on human oral epithelial cell culture model. J Pharm Sci. 2005;94:1300–9.

    Article  CAS  PubMed  Google Scholar 

  24. Ventura CA, Giannone I, Paolino D, Pistará V, Corsaro A, Puglisi G. Preparation of celecoxib-dimethyl-β-cyclodextrin inclusion complex: characterization and in vitro permeation study. Eur J Med Chem. 2005;40:624–31.

    Article  CAS  PubMed  Google Scholar 

  25. Garnero C, Longhi M. Study of ascorbic acid interaction with hydroxypropyl-β-cyclodextrin and triethanolamine, separately and in combination. J Pharm and Biom Anal. 2007;45:536–45.

    Article  CAS  Google Scholar 

  26. Mura P, Maestrelli F, Cirri M. Ternary systems of naproxen with hydroxypropyl-β-cyclodextrin and amino acids. Int J Pharm. 2003;260:293–302.

    Article  CAS  PubMed  Google Scholar 

  27. Mura P, Bettinetti GP, Cirri M, Maestrelli F, Sorrenti M, Catenacci L. Solid-state characterization and dissolution properties of naproxen–arginine–hydroxypropyl-β-cyclodextrin ternary system. Eur J Pharm and Biopharm. 2005;59:99–106.

    Article  CAS  Google Scholar 

  28. Ain-Ai A, Gupta PK. Effect of arginine hydrochloride and hydroxypropyl cellulose as stabilizers on the physical stability of high drug loading nanosuspensions of a poorly soluble compound. Int J Pharm. 2008;351:282–8.

    Article  CAS  PubMed  Google Scholar 

  29. Manali S, Poonam K, Pankajkumar S, Vikrant V, Yogesh P. Effect of PVP K30 and/or l-arginine on stability constant of etoricoxib–HPβCD inclusion complex: preparation and characterization of etoricoxib–HPβCD binary system. Drug Dev Ind Pharm. 2009;35:118–29.

    Article  Google Scholar 

  30. Kolbe I, Csabai K, Szente L, Szejtli J. Development of an omeprazole/arginine/betaCD formulation. 10th International Cyclodextrin Symposium. 2000. p. 337–45.

  31. Klokkers K, Kutschera M, Fischer W. Stabilization of acid sensitive benzimidazoles with amino acid/cyclodextrin combinations.U.S. Patent. 1998.

  32. Figueiras A, Carvalho RA, Ribeiro L, Torres-Labandeira JJ, Veiga FJB. Solid-state characterization and dissolution profiles of the inclusion complexes of omeprazole with native and chemically modified β-cyclodextrin. Eur J Pharm and Biopharm. 2007;67:531–9.

    Article  CAS  Google Scholar 

  33. Higuchi T, Connors A. Phase-solubility techniques. In:Wiley-Interscience, editors. In advances in analytical chemistry instrumentation. New York: 1965. p. 117-212

  34. Tapia MJ, Burrows HD, García JM, García F, Pais AACC. Lanthanide ion interaction with crown ether methacrylic polymer, poly (1, 4, 7, 10-tetraoxacyclododecan-2-methyl methacrylate), as seen by spectroscopy, calorimetric and theoretical studies. Macromolecules. 2004;37:856–62.

    Article  CAS  Google Scholar 

  35. Lindahl E, Hess B, Van der Spoel D. A package for molecular simulation and trajectory analysis. J Mol Mod. 2001;7:306–17.

    CAS  Google Scholar 

  36. Berendsen HJC, Van der Spoel D, Van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun. 1995;91:43–56.

    Article  CAS  Google Scholar 

  37. Kleywegt GJ, Jones TA. Databases in protein crystallography. Acta Crystallogr Sect D-Biol Crystallogr. 1998;D54:1119–31.

    Article  CAS  Google Scholar 

  38. Schuettelkopf AW, Van Aalten DMF. PRODRG—a tool for high throughput crystallography of protein–ligand complexes. Acta Crystallogr Sect D-Biol Crystallogr. 2004;D60:1355–63.

    Article  CAS  Google Scholar 

  39. Brändström A, Bergman NA, Grundevik I, Johansson S, Ohlson L. Chemical reactions of omeprazole and omeprazole analogues. II. Kinetics of the reaction of omeprazole in the presence of 2-mercaptoethanol. Acta Chem Scand. 1998;43:549–68.

    Article  Google Scholar 

  40. Yang R, Zavala SG, Schulman PJ. Acid–base chemistry of omeprazole in aqueous solutions. Anal Chim Acta. 2003;481:155–64.

    Article  CAS  Google Scholar 

  41. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, et al. General atomic and molecular electronic-structure system. J Comput Chem. 1993;14:1347–63.

    Article  CAS  Google Scholar 

  42. Essman U, Perela L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys. 1995;103:8577–92.

    Article  Google Scholar 

  43. Miyamoto S, Kollman PA. Settle: an analytical version of the shake and rattle algorithms for rigid water models. J Comput Chem. 1992;13:952–62.

    Article  CAS  Google Scholar 

  44. Berendsen HJC, Postma JPM, DiNola A, Haak J. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.F. would like to acknowledge the grant SFRH/BD/19175/2004, and J.M.G.S. would like to acknowledge the grants SFRH/BD/17440/2004 and SFRH/BPD/46319/2008 from Fundação para a Ciência e Tecnologia (FCT, Portugal). The authors would like to thank Belmac Laboratory, S.A. (Madrid, Spain) for kindly donating of OME and Roquette (Lestrem, France) for providing the cyclodextrins used in this study, β-cyclodextrin, and methyl-β-cyclodextrin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Francisco Veiga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueiras, A., Sarraguça, J.M.G., Pais, A.A.C.C. et al. The Role of l-arginine in Inclusion Complexes of Omeprazole with Cyclodextrins. AAPS PharmSciTech 11, 233–240 (2010). https://doi.org/10.1208/s12249-009-9375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-009-9375-2

Key words

Navigation