Skip to main content
Log in

Effect of Sugars, Surfactant, and Tangential Flow Filtration on the Freeze-Drying of Poly(lactic acid) Nanoparticles

AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Poly(d,l-lactic acid) nanoparticles were freeze-dried in this study. With respect to drying, effect of protective excipients and purification from excess surfactant were evaluated. The nanoparticles were prepared by the nanoprecipitation method with or without a surfactant, poloxamer 188. The particles with the surfactant were used as such or purified by tangential flow filtration. The protective excipients tested were trehalose, sucrose, lactose, glucose, poloxamer 188, and some of their combinations. The best freeze-drying results in terms of nanoparticle survival were achieved with trehalose or sucrose at concentrations 5% and 2% and, on the other hand, with a combination of lactose and glucose. Purification of the nanoparticle dispersion from the excess surfactant prior to the freeze-drying by tangential flow filtration ensured better drying outcome and enabled reduction of the amount of the protective excipients used in the process. The excess surfactant, if not removed, was assumed to interact with the protective excipients decreasing their protective mechanism towards the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res. 2006;23:1417–50.

    Article  PubMed  CAS  Google Scholar 

  2. Chacón M, Molpeceres J, Berges L, Guzmán M, Aberturas MR. Stability and freeze-drying of cyclosporine loaded poly(d,l-lactide-glycolide) carriers. Eur J Pharm Sci. 1999;8:99–107.

    Article  PubMed  Google Scholar 

  3. Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58:1688–713.

    Article  PubMed  CAS  Google Scholar 

  4. Abdelwahed W, Degobert G, Fessi H. A pilot study of freeze drying of poly(ɛ-caprolactone) nanocapsules stabilized by poly(vinyl alcohol): formulation and process optimization. Int J Pharm. 2006;309:178–88.

    Article  PubMed  CAS  Google Scholar 

  5. de Jaeghere F, Allémann E, Leroux J-C, Stevels W, Feijen J, Doelker E, et al. Formulation and lyoprotection of poly(lactic acid-co-ethylene oxide) nanoparticles: influence on physical stability and in vitro cell uptake. Pharm Res. 1999;16:859–66.

    Article  PubMed  Google Scholar 

  6. Jeong Y-I, Shim Y-H, Kim C, Lim G-T, Choi K-C, Yoon C. Effect of cryoprotectants on the reconstitution properties of surfactant-free nanoparticles of poly(d,l-lactide-co-glycolide). J Microencapsul. 2005;22:593–601.

    Article  PubMed  CAS  Google Scholar 

  7. Konan YN, Gurny R, Allémann E. Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles. Int J Pharm. 2002;233:239–52.

    Article  PubMed  CAS  Google Scholar 

  8. Cavalli R, Caputo O, Carlotti ME, Trotta M, Scarnecchia C, Gasco MR. Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles. Int J Pharm. 1997;148:47–54.

    Article  CAS  Google Scholar 

  9. Schwarz C, Mehnert W. Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN). Int J Pharm. 1997;157:171–9.

    Article  PubMed  CAS  Google Scholar 

  10. Layre A-M, Couvreur P, Richard J, Requier D, Ghermani NE, Gref R. Freeze-drying of composite core-shell nanoparticles. Drug Dev Ind Pharm. 2006;32:839–46.

    Article  PubMed  CAS  Google Scholar 

  11. Anhorn MG, Mahler H-C, Langer K. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients. Int J Pharm. 2008;363:162–9.

    Article  PubMed  CAS  Google Scholar 

  12. Zillies JC, Zwiorek K, Hoffmann F, Vollmar A, Anchordoquy TJ, Winter G, et al. Formulation development of freeze-dried oligonucleotide-loaded gelatin nanoparticles. Eur J Pharm Biopharm. 2008;70:514–21.

    Article  PubMed  CAS  Google Scholar 

  13. Saez A, Guzmán M, Molpeceres J, Aberturas MR. Freeze-drying of polycaprolactone and poly(d,l-lactic-glycolic) nanoparticles induce minor particle size changes affecting the oral pharmacokinetics of loaded drugs. Eur J Pharm Biopharm. 2000;50:379–87.

    Article  PubMed  CAS  Google Scholar 

  14. de Chasteigner S, Fessi H, Cavé G, Devissaguet JP, Puisieux F. Gastro-intestinal tolerance study of a freeze-dried oral dosage form of indometacin-loaded nanocapsules. STP Pharma Sci. 1995;5:242–6.

    CAS  Google Scholar 

  15. Hirsjärvi S, Peltonen L, Kainu L, Hirvonen J. Freeze-drying of low molecular weight poly(l-lactic acid) nanoparticles: effect of cryo- and lyoprotectants. J Nanosci Nanotechnol. 2006;6:3110–7.

    Article  PubMed  Google Scholar 

  16. Abdelwahed W, Degobert G, Fessi H. Investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage. Eur J Pharm Biopharm. 2006;63:87–94.

    Article  PubMed  CAS  Google Scholar 

  17. Dalwadi G, Sunderland VB. Purification of PEGylated nanoparticles using tangential flow filtration (TFF). Drug Dev Ind Pharm. 2007;33:1030–9.

    Article  PubMed  CAS  Google Scholar 

  18. Dalwadi G, Benson H, Chen Y. Comparison of diafiltration and tangential flow filtration for purification of nanoparticle suspensions. Pharm Res. 2005;22:2152–62.

    Article  PubMed  CAS  Google Scholar 

  19. Limayem I, Charcosset C, Fessi H. Purification of nanoparticle suspensions by a concentration/diafiltration process. Sep Purif Technol. 2004;38:1–9.

    Article  CAS  Google Scholar 

  20. de Jaeghere F, Allémann E, Feijen J, Kissel T, Doelker E, Gurny R. Freeze-drying and lyopreservation of diblock and triblock poly(lactic acid)-poly(ethylene oxide) (PLA-PEO) copolymer nanoparticles. Pharm Dev Technol. 2000;5:473–83.

    Article  PubMed  Google Scholar 

  21. Hirsjärvi S, Peltonen L, Hirvonen J. Layer-by-layer polyelectrolyte coating of low molecular weight poly(lactic acid) nanoparticles. Colloid Surf B. 2006;49:93–9.

    Article  Google Scholar 

  22. Sukhorukov GB, Donath E, Lichtenfeld H, Knippel E, Knippel M, Budde A, et al. Layer-by-layer self assembly of polyelectrolytes on colloidal particles. Colloid Surf A. 1998;137:253–66.

    Article  Google Scholar 

  23. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55:R1–4.

    Article  CAS  Google Scholar 

  24. Hirsjärvi S, Peltonen L, Hirvonen J. Surface pressure measurements in particle interaction and stability studies of poly(lactic acid) nanoparticles. Int J Pharm. 2008;348:153–60.

    Article  PubMed  Google Scholar 

  25. Luzardo MdC, Amalfa F, Nuñez AM, Díaz S, Biondi de Lopez AC, Disalvo EA. Effect of trehalose and sucrose on the hydration and dipole potential of lipid bilayers. Biophys J. 2000;78:2452–8.

    Article  PubMed  CAS  Google Scholar 

  26. Quintanar-Guerrero D, Ganem-Quintanar A, Allémann E, Fessi H, Doelker E. Influence of the stabilizer coating layer on the purification and freeze-drying of poly(d,l-lactic acid) nanoparticles prepared by an emulsion–diffusion technique. J Microencapsul. 1998;15:107–19.

    Article  PubMed  CAS  Google Scholar 

  27. Carpenter JF, Pikal MJ, Chang BS, Randolph TW. Rational design of stable lyophilized protein formulations: some practical advice. Pharm Res. 1997;14:969–75.

    Article  PubMed  CAS  Google Scholar 

  28. Adams GDJ, Ramsay JR. Optimizing the lyophilization cycle and the consequences of collapse on the pharmaceutical acceptability of Erwinia l-asparaginase. J Pharm Sci. 1996;85:1301–5.

    Article  PubMed  CAS  Google Scholar 

  29. Zambaux MF, Bonneaux F, Gref R, Dellacherie E, Vigneron C. MPEO-PLA nanoparticles: effect of MPEO content on some of their surface properties. J Biomed Mater Res. 1999;44:109–15.

    Article  PubMed  CAS  Google Scholar 

  30. Singh-Joy SD, McLain VC. Safety assessment of poloxamers 101, 105, 108, 122, 123, 124, 181, 182, 183, 184, 185, 188, 212, 215, 217, 231, 234, 235, 237, 238, 282, 284, 288, 331, 333, 334, 335, 338, 401, 402, 403, and 407, poloxamer 105 benzoate, and poloxamer 182 dibenzoate as used in cosmetics. Int J Toxicol. 2008;27:93–128.

    Article  PubMed  Google Scholar 

  31. Millipore Corporation. Technical brief: protein concentration and diafiltration by tangential flow filtration. Billerica: Millipore Corporation; 2003.

    Google Scholar 

  32. Kokol V. Interactions between polysaccharide polymer thickener and bifunctional bireactive dye in the presence of nonionic surfactants. Part 1: surface tension and rheological behavior of different polysaccharide solutions. Carbohydr Polym. 2002;50:227–36.

    Article  CAS  Google Scholar 

  33. Choi MJ, Briancon S, Andrieu J, Min SG, Fessi H. Effect of freeze-drying process conditions on the stability of nanoparticles. Dry Technol. 2004;22:335–46.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Electron Microscopy Unit of the Institute of Biotechnology (University of Helsinki) is acknowledged for providing laboratory facilities and analytical equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuli Hirsjärvi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirsjärvi, S., Peltonen, L. & Hirvonen, J. Effect of Sugars, Surfactant, and Tangential Flow Filtration on the Freeze-Drying of Poly(lactic acid) Nanoparticles. AAPS PharmSciTech 10, 488–494 (2009). https://doi.org/10.1208/s12249-009-9236-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-009-9236-z

Key words

Navigation