Skip to main content
Log in

Self-built Supercritical CO2 Anti-solvent Unit Design, Construction and Operation using Carbamazepine

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this study was to design and build a supercritical CO2 anti-solvent (SAS) unit and use it to produce microparticles of the class II drug carbamazepine. The operation conditions of the constructed unit affected the carbamazepine yield. Optimal conditions were: organic solution flow rate of 0.15 mL/min, CO2 flow rate of 7.5 mL/min, pressure of 4,200 psi, over 3,000 s and at 33°C. The drug solid-state characteristics, morphology and size distribution were examined before and after processing using X-ray powder diffraction and differential scanning calorimetry, scanning electron microscopy and laser diffraction particle size analysis, respectively. The in vitro dissolution of the treated particles was investigated and compared to that of untreated particles. Results revealed a change in the crystalline structure of carbamazepine with different polymorphs co-existing under various operation conditions. Scanning electron micrographs showed a change in the crystalline habit from the prismatic into bundled whiskers, fibers and filaments. The volume weighted diameter was reduced from 209 to 29 μm. Furthermore, the SAS CO2 process yielded particles with significantly improved in vitro dissolution. Further research is needed to optimize the operation conditions of the self-built unit to maximize the production yield and produce a uniform polymorphic form of carbamazepine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. J. Hickey, and D. Ganderton. Pharmaceutical process engineering, Marcel Dekker, New York, 2001.

    Google Scholar 

  2. M. E. Aulton. Pharmaceutics: the science of dosage form design, 2nd ed., Churchhill Livingstone, New York, 2002.

    Google Scholar 

  3. K. Okuyama, and I. W. Lenggoro. Preparation of nanoparticles via spray route. Chem. Eng. Sci. 58(3–6):537–547 (2003).

    Article  CAS  Google Scholar 

  4. E. J. Beckman. Supercritical and near-critical CO2 in green chemical synthesis and processing. J. Supercrit. Fluids. 28:121–191 (2003).

    Article  CAS  Google Scholar 

  5. E. L. V. Goetheer, M. A. G. Vorstman, and J. T. F. Keurentjes. Opportunities for process intensification using reverse micelles in liquid and supercritical carbon dioxide. Chem. Eng. Sci. 54(10):1589–1596 (1999).

    Article  CAS  Google Scholar 

  6. B. W. Wenclawiak, A. Wolf, and S. Wilnewski. Extractability of As-chelates and solubility of different Rh, Pd-chelates in supercritical fluid CO2. In GHBrunner (ed.), Supercritical Fluids as Solvents and Reaction Media, Elsevier, Amsterdam, 2007, pp. 323–340.

    Google Scholar 

  7. Y. P. Sun, H. W. Rollins, B. Jayasundera, M. J. Meziani, and C. E. Bunker. In Y. P. Sun (ed.), Supercritical fluid technology in materials science and engineering: synthesis, properties, and applications, Marcel Dekker, New York, 2002, p. 491.

    Google Scholar 

  8. T. J. Young, S. Mawson, and K. P. Johnston. Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs. Biotechnol. Prog. 16:402–407 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. N. Jovanovic, A. Bouchard, G. W. Hofland, G. J. Witkamp, D. J. A. Crommelin, and W. Jiskoot. Stabilization of proteins in dry powder formulations using supercritical fluid technology. Pharm. Res. 21(11):1955–1969 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. S. Palakodaty, and P. York. Phase behavioral effects on particle formation processes using supercritical fluids. Pharm. Res. 16(7):976–985 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. T. A. Ranjit, and R. B. Gupta. Formation of phenytoin nanoparticles using RESS-SC process. Int. J. Pharm. 308:190–199 (2006).

    Article  CAS  Google Scholar 

  12. P. M. Gosselin, R. Thibert, M. Preda, and J. N. McMullen. Polymorphic properties of micronized carbamazepine produced by RESS. Int. J. Pharm. 252:225–233 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. R. Bettini, L. Bonassi, V. Castoro, Rossi, L. Zema, A. Gazzaniga, and F. Giordano. Solubility and conversion of carbamazepine polymorphs in supercritical carbon dioxide. Eur. J. Pharm. Sci. 13(3):281–286 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. M. Moneghini, I. Kikic, D. Voinovich, B. Perissutti, P. Alessi, A. Cortesi, F. Princivalle, and D. Solinas. Study of the solid state of carbamazepine after processing with gas anti-solvent technique. Eur. J. Pharm. Biopharm. 56(2):281–289 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. J. O. Werling, and P. G. Debenedetti. Numerical modeling of mass transfer in the supercritical antisolvent process. J. Supercrit. Fluids. 16(2):167–181 (1999).

    Article  CAS  Google Scholar 

  16. S. Budavari, M. J. O’Neil, A. Smith, P. E. Heckelman, and J. F. Kinneary. The Merck index: an encyclopedia of chemicals, drugs and biologicals, 12th ed., Chapman & Hall, London, 1996.

    Google Scholar 

  17. K. Parfitt. Martindale: the complete drug reference, 32rd ed., Pharmaceutical, London, 1999.

    Google Scholar 

  18. FDA. Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system, 2007. http://www.fda.gov/cder/guidance/3618fnl.pdf (accessed 18/11/07).

  19. M. Moneghini, I. Kikic, D. Voinovich, B. Perissutti, and J. Filipovic-Grcic. Processing of carbamazepine-PEG 4000 solid dispersions with supercritical carbon dioxide: preparation, characterisation, and in vitro dissolution. Int. J. Pharm. 222(1):129–138 (2001).

    Article  PubMed  CAS  Google Scholar 

  20. A. D. Edwards, B. Y. Shekunov, A. Kordikowski, R. T. Forbes, and P. York. Crystallization of pure anhydrous polymorphs of carbamazepine by solution enhanced dispersion with supercritical fluids (SEDS™). J. Pharm. Sci. 90(8):1115–1124 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. P. A. Kikic, A. Cortesi, F. Eva, A. Fogar, M. moneghini, B. Perissutti, and D. Voinovich. Supercritical anti-solvent precipitation processes: different ways for improving the performance of drugs. In A. Bertucco (ed.), Chemical Engineering Transactions, Vol. 2, AIDIC, Milano, 2002, pp. 821–826.

    Google Scholar 

  22. J. C. De La Fuente, C. J. Peters, and A. J. De Swaan. Volume expansion in relation to the gas-antisolvent process. J. Supercrit. Fluids. 17(1):13–23 (2000).

    Article  Google Scholar 

  23. J. C. De La Fuente, A. Shariati, and C. J. Peters. On the selection of optimum thermodynamic conditions for the GAS process. J. Supercrit. Fluids. 32(1)–3:55–61 (2004).

    Google Scholar 

  24. M. Perrut, J. Jung, and F. Leboeuf. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes Part I: Micronization of neat particles. Int. J. Pharm. 288(1):3–10 (2005).

    Article  PubMed  CAS  Google Scholar 

  25. A. Nokhodchi, N. Bolourtchian, and R. Dinarvand. Dissolution and mechanical behaviors of recrystallized carbamazepine from alcohol solution in the presence of additives. J. Cryst. Growth. 274(3–4):573–584 (2005).

    Article  CAS  Google Scholar 

  26. L. E. O’Brien, P. Timmins, A. C. Williams, and P. York. Use of in situ FT-Raman spectroscopy to study the kinetics of the transformation of carbamazepine polymorphs. J. Pharm. Biomed. Anal. 36(2):335–340 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. C. McGregor, M. H. Saunders, G. Buckton, and R. D. Saklatvala. The use of high-speed differential scanning calorimetry (Hyper-DSCä) to study the thermal properties of carbamazepine polymorphs. Thermochim. Acta. 417(2):231–237 (2004).

    Article  CAS  Google Scholar 

  28. A. L. Grzesiak, M. Lang, K. Kim, and A. J. Matzger. Comparison of the four anhydrous polymorphs of carbamazepine and the crystal structure of form I. J. Pharm. Sci. 92(11):2260–2271 (2003).

    Article  PubMed  CAS  Google Scholar 

  29. B. Subramaniam, R. A. Rajewski, and K. Snavely. Pharmaceutical processing with supercritical carbon dioxide. J. Pharm. Sci. 86(8):885–890 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. R. B. Gupta. Supercritical fluid technology for particle engineering. In U. B. Kompella, and R. B. Gupta (eds.), Nanoparticle technology for drug delivery, Vol. 159, Taylor and Francis, New York, 2006, pp. 53–84.

    Google Scholar 

  31. H. Ohde, J. M. Rodruguez, X. R. Ye, and C. M. Wai. Synthesizing silver halide nanoparticles in supercritical carbon dioxide utilizing a water-in-CO2 microemulsion. Chem. Comm. 18:2353–2354 (2000).

    Article  Google Scholar 

  32. S. Sethia, and E. Squillante. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int. J. Pharm. 272:1–10 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. B. C. Hancock, and M. Parksi. What is the true solubility advantage for amorphous pharmaceuticals? Pharm. Res. 17(4):397–404 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raid G. Alany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, D., Falconer, J., Krauel-Goellner, K. et al. Self-built Supercritical CO2 Anti-solvent Unit Design, Construction and Operation using Carbamazepine. AAPS PharmSciTech 9, 944–952 (2008). https://doi.org/10.1208/s12249-008-9130-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-008-9130-0

Keywords

Navigation