Skip to main content

Advertisement

Log in

A Novel Nanoparticle Formulation for Sustained Paclitaxel Delivery

AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Purpose

To develop a novel nanoparticle drug delivery system consisting of chitosan and glyceryl monooleate (GMO) for the delivery of a wide variety of therapeutics including paclitaxel.

Methods

Chitosan/GMO nanoparticles were prepared by multiple emulsion (o/w/o) solvent evaporation methods. Particle size and surface charge were determined. The morphological characteristics and cellular adhesion were evaluated with surface or transmission electron microscopy methods. The drug loading, encapsulation efficiency, in vitro release and cellular uptake were determined using HPLC methods. The safety and efficacy were evaluated by MTT cytotoxicity assay in human breast cancer cells (MDA-MB-231).

Results

These studies provide conceptual proof that chitosan/GMO can form polycationic nano-sized particles (400 to 700 nm). The formulation demonstrates high yields (98 to 100%) and similar entrapment efficiencies. The lyophilized powder can be stored and easily be resuspended in an aqueous matrix. The nanoparticles have a hydrophobic inner-core with a hydrophilic coating that exhibits a significant positive charge and sustained release characteristics. This novel nanoparticle formulation shows evidence of mucoadhesive properties; a fourfold increased cellular uptake and a 1000-fold reduction in the IC50 of PTX.

Conclusion

These advantages allow lower doses of PTX to achieve a therapeutic effect, thus presumably minimizing the adverse side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. J. A. Ajani, et al. Phase II study of Taxol in patients with advanced gastric carcinoma. Cancer J. Sci. Am. 4(4):269–274 (1998).

    PubMed  CAS  Google Scholar 

  2. B. B. Rogers. Taxol: a promising new drug of the ‘90s. Oncol. Nurs. Forum 20(10):1483–1489 (1993).

    PubMed  CAS  Google Scholar 

  3. A. K. Singla, et al. Paclitaxel and its formulations. Int. J. Pharm. 235(1–2):179–192 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. B. D. Tarr, and S. H. Yalkowsky. A new parenteral vehicle for the administration of some poorly soluble anti-cancer drugs. J. Parenter. Sci. Technol. 41:31–33 (1987).

    PubMed  CAS  Google Scholar 

  5. T. C. Chao, et al. Paclitaxel in a novel formulation containing less Cremophor EL as first-line therapy for advanced breast cancer: a phase II trial. Invest. New Drugs 23(2):171–177 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. H. Gelderblom, et al. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer 37(13):1590–1598 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. D. Friedland, et al. Hypersensitivity reactions from taxol and etoposide. J. Natl. Cancer Inst. 85(24):2036 (1993).

    Article  PubMed  CAS  Google Scholar 

  8. N. K. Ibrahim, et al. Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin. Cancer Res. 8(5):1038–1044 (2002).

    PubMed  CAS  Google Scholar 

  9. W. J. Gradishar. Albumin-bound paclitaxel: a next-generation taxane. Expert Opin. Pharmacother. 7(8):1041–1053 (2006).

    Article  PubMed  CAS  Google Scholar 

  10. M. Socinski. Update on nanoparticle albumin-bound paclitaxel. Clin. Adv. Hematol. Oncol. 4(10):745–746 (2006).

    PubMed  Google Scholar 

  11. J. Lee Villano, et al. Abraxane induced life-threatening toxicities with metastatic breast cancer and hepatic insufficiency. Invest. New Drugs 24(5):455–456 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. A. Bernkop-Schnurch, et al. Thiomers: preparation and in vitro evaluation of a mucoadhesive nanoparticulate drug delivery system. Int. J. Pharm. 317(1):76–81 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. F. Zheng, et al. Chitosan nanoparticle as gene therapy vector via gastrointestinal mucosa administration: results of an in vitro and in vivo study. Life Sci. 80(4):388–396 (2007).

    Article  PubMed  CAS  Google Scholar 

  14. A. M. De Campos, et al. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int. J. Pharm. 224(1–2):159–168 (2001).

    Article  PubMed  Google Scholar 

  15. G. Sandri, et al. Nanoparticles based on N-trimethylchitosan: evaluation of absorption properties using in vitro (Caco-2 cells) and ex vivo (excised rat jejunum) models. Eur. J. Pharm. Biopharm. 65(1):68–77 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. A. Moore, et al. In vivo targeting of underglycosylated MUC-1 tumor antigen using a multimodal imaging probe. Cancer Res. 64(5):1821–1827 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. F. Cui, et al. Preparation and characterization of mucoadhesive polymer-coated nanoparticles. Int. J. Pharm. 316(1–2):154–161 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. K. A. Howard, et al. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol. Ther. 14(4):476–484 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. H. Takeuchi, et al. Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes. Pharm. Res. 13(6):896–901 (1996).

    Article  PubMed  CAS  Google Scholar 

  20. H. Takeuchi, et al. Novel mucoadhesion tests for polymers and polymer-coated particles to design optimal mucoadhesive drug delivery systems. Adv. Drug Deliv. Rev. 57(11):1583–1594 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. J. Thongborisute, et al. The effect of particle structure of chitosan-coated liposomes and type of chitosan on oral delivery of calcitonin. J. Drug Target 14(3):147–154 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. S. Jauhari, and A. K. Dash. A mucoadhesive in situ gel delivery system for paclitaxel. AAPS PharmSciTech. 7(2):E53 (2006).

    Article  PubMed  Google Scholar 

  23. J. Panyam, and V. Labhasetwar. Targeting intracellular targets. Curr. Drug Deliv. 1(3):235–247 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. A. K. Dash, et al. X-ray powder diffractometric method for quantitation of crystalline drug in microparticulate systems. I. Microspheres. J. Pharm. Sci. 91(4):83–990 (2002).

    Article  CAS  Google Scholar 

  25. Y. Wu, et al. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int. J. Pharm. 295(1–2):235–245 (2005).

    Article  PubMed  CAS  Google Scholar 

  26. F. Q. Hu, et al. Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel. Colloids Surf. B Biointerfaces 50(2):97–103 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. J. Hyung Park, et al. Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin: in vivo biodistribution and anti-tumor activity. Biomaterials 27(1):119–126 (2006).

    Article  PubMed  CAS  Google Scholar 

  28. J. H. Kim, et al. Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel. J. Control Release 111(1–2):228–234 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. F. Maestrelli, et al. A new drug nanocarrier consisting of chitosan and hydoxypropylcyclodextrin. Eur. J. Pharm. Biopharm. 63(2):79–86 (2006).

    Article  PubMed  CAS  Google Scholar 

  30. S. A. Agnihotri, et al. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control Release 100(1):5–28 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. C. Prego, et al. Chitosan-PEG nanocapsules as new carriers for oral peptide delivery. Effect of chitosan pegylation degree. J. Control Release 111(3):299–308 (2006).

    Article  PubMed  CAS  Google Scholar 

  32. M. Garcia-Fuentes, et al. A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly(ethylene glycol) as carriers for oral calcitonin delivery. Eur. J. Pharm. Sci. 25(1):133–143 (2005).

    Article  PubMed  CAS  Google Scholar 

  33. E. S. Lutton. Phase behavior of aqueous systems of monoglycerides. J. Am. Oil Chem. Soc. 42(12):1068–1070 (1965).

    Article  PubMed  CAS  Google Scholar 

  34. G. Garg, and S. Saraf. Cubosomes: an overview. Biol. Pharm. Bull. 30(2):350–353 (2007).

    Article  PubMed  CAS  Google Scholar 

  35. S. Ganguly, and A. K. Dash. A novel in situ gel for sustained drug delivery and targeting. Int. J. Pharm. 276(1–2):83–92 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. Y. Sadhale, and J. C. Shah. Glyceryl monooleate cubic phase gel as chemical stability enhancer of cefazolin and cefuroxime. Pharm. Dev. Technol. 3(4):549–556 (1998).

    Article  PubMed  CAS  Google Scholar 

  37. M. Uner. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Pharmazie 61(5):375–386 (2006).

    PubMed  CAS  Google Scholar 

  38. P. M. Bummer. Physical chemical considerations of lipid-based oral drug delivery–solid lipid nanoparticles. Crit. Rev. Ther. Drug Carrier Syst. 21)(1):1–20 (2004).

    Article  PubMed  CAS  Google Scholar 

  39. P. R. Lockman, et al. Nanoparticle technology for drug delivery across the blood–brain barrier. Drug Dev. Ind. Pharm. 28(1):1–13 (2002).

    Article  PubMed  CAS  Google Scholar 

  40. S. J. Douglas, et al. Nanoparticles in drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 3(3):233–261 (1987).

    PubMed  CAS  Google Scholar 

  41. H. Takeuchi, et al. Mucoadhesive nanoparticulate systems for peptide drug delivery. Adv. Drug Deliv. Rev. 47(1):39–54 (2001).

    Article  PubMed  CAS  Google Scholar 

  42. F. Shikata, et al. In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer. Eur. J. Pharm. Biopharm. 53(1):57–63 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

These studies were supported by a Department of Defense Concept Award BC045664.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Dash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trickler, W.J., Nagvekar, A.A. & Dash, A.K. A Novel Nanoparticle Formulation for Sustained Paclitaxel Delivery. AAPS PharmSciTech 9, 486–493 (2008). https://doi.org/10.1208/s12249-008-9063-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-008-9063-7

Key words

Navigation