Skip to main content
Log in

In Vitro-In Vivo Extrapolation and Scaling Factors for Clearance of Human and Preclinical Species with Liver Microsomes and Hepatocytes

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

In vitro-in vivo extrapolation ((IVIVE) and empirical scaling factors (SF) of human intrinsic clearance (CLint) were developed using one of the largest dataset of 455 compounds with data from human liver microsomes (HLM) and human hepatocytes (HHEP). For extended clearance classification system (ECCS) class 2/4 compounds, linear SFs (SFlin) are approximately 1, suggesting enzyme activities in HLM and HHEP are similar to those in vivo under physiological conditions. For ECCS class 1A/1B compounds, a unified set of SFs was developed for CLint. These SFs contain both SFlin and an exponential SF (SFβ) of fraction unbound in plasma (fu,p). The unified SFs for class 1A/1B eliminate the need to identify the transporters involved prior to clearance prediction. The underlying mechanisms of these SFs are not entirely clear at this point, but they serve practical purposes to reduce biases and increase prediction accuracy. Similar SFs have also been developed for preclinical species. For HLM-HHEP disconnect (HLM > HHEP) ECCS class 2/4 compounds that are mainly metabolized by cytochrome P450s/FMO, HLM significantly overpredicted in vivo CLint, while HHEP slightly underpredicted and geometric mean of HLM and HHEP slightly overpredicted in vivo CLint. This observation is different than in rats, where rat liver microsomal CLint correlates well with in vivo CLint for compounds demonstrating permeability-limited metabolism. The good CLint IVIVE developed using HLM and HHEP helps build confidence for prospective predictions of human clearance and supports the continued utilization of these assays to guide structure–activity relationships to improve metabolic stability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

Abbreviations

ADME:

Absorption, distribution, metabolism, and excretion

AFE:

Average fold error

ALQ:

Above the limit of quantification

BLQ:

Below the limit of quantification

CLh :

Hepatic clearance

CLint :

Intrinsic clearance

CO2 :

Carbon dioxide

CYP:

Cytochrome P450

DDI:

Drug-drug interaction

DI90% :

Total deviation index (a measure of the fold range that captures 90% of prediction errors)

ECCS:

Extended clearance classification system

ELogD:

Chromatographic LogD

FMO:

Flavin-containing monooxygenase

f u,lm :

Fraction unbound in liver microsomes

f u,p :

Fraction unbound in plasma

HEK-293:

Immortalized human embryonic kidney cell line

HEP:

Hepatocytes

HHEP:

Human hepatocytes

HLM:

Human liver microsomes

HTD 96:

96-Well high throughput equilibrium dialysis device

IV :

Intravenous

IVIVE :

In vitro-in vivo Extrapolation

k w :

Chromatographic capacity factor in aqueous

LC–MS/MS:

Liquid chromatography with tandem mass spectrometry

LM :

Liver microsomes

logD7.4 :

Log10 of distribution coefficient between octanol and pH 7.4 buffer

MDCK:

Madin-Darby canine kidney cell line

MDCK-LE:

Low efflux MDCK cell line (i.e., RRCK)

MgCl2 :

Magnesium chloride

NADPH:

Reduced nicotinamide adenine dinucleotide phosphate

NHP:

Non-human primate

OAT:

Organic anion transporter

OATP:

Organic anion transporting polypeptides

P app :

Apparent permeability

PBPK:

Physiologically based pharmacokinetic modeling

PBS:

Phosphate-buffered saline

PK:

Pharmacokinetics

pKa :

Negative log10 of acid dissociation constant

Rbp :

Blood-to-plasma ratio

rpm:

Revolutions per minute

RRCK:

Ralph and Russ canine kidney cell line (i.e., MDCK-LE)

SAR:

Structure-activity relationships

SF:

Scaling factor

SFβ :

Exponential scaling factor

SFlin :

Linear scaling factor

SFLogD:

Shake-flask LogD

UV:

Ultraviolet

References

  1. Smith DA, Beaumont K, Maurer TS, Di L. Clearance in drug design. J Med Chem. 2019;62(5):2245–55. https://doi.org/10.1021/acs.jmedchem.8b01263.

    Article  CAS  PubMed  Google Scholar 

  2. Smith DA, Beaumont K, Maurer TS, Di L. Relevance of half-life in drug design. J Med Chem. 2018;61(10):4273–82. https://doi.org/10.1021/acs.jmedchem.7b00969.

    Article  CAS  PubMed  Google Scholar 

  3. Smith DA, Beaumont K, Maurer TS, Di L. Volume of distribution in drug design. J Med Chem. 2015;58(15):5691–8. https://doi.org/10.1021/acs.jmedchem.5b00201.

    Article  CAS  PubMed  Google Scholar 

  4. Benet LZ, Zia-Amirhosseini P. Basic principles of pharmacokinetics. Toxicol Pathol. 1995;23(2):115. https://doi.org/10.1177/019262339502300203.

    Article  CAS  PubMed  Google Scholar 

  5. van de Waterbeemd H, Smith DA, Beaumont K, Walker DK. Property-based design: optimization of drug absorption and pharmacokinetics. J Med Chem. 2001;44(9):1313–33. https://doi.org/10.1021/jm000407e.

    Article  CAS  PubMed  Google Scholar 

  6. Caldwell GW, Masucci JA, Yan Z, Hageman W. Allometric scaling of pharmacokinetic parameters in drug discovery: can human CL, Vss and t1/2 be predicted from in-vivo rat data? Eur J Drug Metab Pharmacokinet. 2004;29(2):133–43. https://doi.org/10.1007/bf03190588.

    Article  CAS  PubMed  Google Scholar 

  7. Huang Q, Riviere JE. The application of allometric scaling principles to predict pharmacokinetic parameters across species. Expert Opin Drug Metab Toxicol. 2014;10(9):1241–53. https://doi.org/10.1517/17425255.2014.934671.

    Article  CAS  PubMed  Google Scholar 

  8. Lin JH. Applications and limitations of interspecies scaling and in vitro extrapolation in pharmacokinetics. Drug Metab Dispos. 1998;26(12):1202–12.

    CAS  PubMed  Google Scholar 

  9. Riede J, Poller B, Umehara K-i, Huwyler J, Camenisch G. New IVIVE method for the prediction of total human clearance and relative elimination pathway contributions from in vitro hepatocyte and microsome data. Eur J Pharm Sci. 2016;86:96–102. https://doi.org/10.1016/j.ejps.2016.02.022.

    Article  CAS  PubMed  Google Scholar 

  10. Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos. 1999;27(11):1350–9.

    CAS  PubMed  Google Scholar 

  11. Hallifax D, Foster JA, Houston JB. Prediction of human metabolic clearance from in vitro systems: retrospective analysis and prospective view. Pharm Res. 2010;27(10):2150–61. https://doi.org/10.1007/s11095-010-0218-3.

    Article  CAS  PubMed  Google Scholar 

  12. Hosea NA, Collard WT, Cole S, Maurer TS, Fang RX, Jones H, et al. Prediction of human pharmacokinetics from preclinical information: comparative accuracy of quantitative prediction approaches. J Clin Pharmacol. 2009;49(5):513–33.

    Article  CAS  PubMed  Google Scholar 

  13. Chen Y, Jin JY, Mukadam S, Malhi V, Kenny JR. Application of IVIVE and PBPK modeling in prospective prediction of clinical pharmacokinetics: strategy and approach during the drug discovery phase with four case studies PROSPECTIVE Simcyp SIMULATION OF CLINICAL PK DATAY. CHEN ET AL. Biopharm Drug Dispos. 2012;33(2):85-98. https://doi.org/10.1002/bdd.1769.

  14. Jones HM, Gardner IB, Watson KJ. Modelling and PBPK simulation in drug discovery. AAPS J. 2009;11(1):155–66. https://doi.org/10.1208/s12248-009-9088-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davies M, Jones RDO, Grime K, Jansson-Lofmark R, Fretland AJ, Winiwarter S, et al. Improving the accuracy of predicted human pharmacokinetics: lessons learned from the AstraZeneca drug pipeline over two decades. Trends Pharmacol Sci. 2020;41(6):390–408. https://doi.org/10.1016/j.tips.2020.03.004.

    Article  CAS  PubMed  Google Scholar 

  16. Di L. The role of drug metabolizing enzymes in clearance. Expert Opin Drug Metab Toxicol. 2014;10(3):379–93. https://doi.org/10.1517/17425255.2014.876006.

    Article  CAS  PubMed  Google Scholar 

  17. Keefer C, Chang G, Carlo A, Novak JJ, Banker M, Carey J, et al. Mechanistic insights on clearance and inhibition discordance between liver microsomes and hepatocytes when clearance in liver microsomes is higher than in hepatocytes. Eur J Pharm Sci. 2020;155:105541. https://doi.org/10.1016/j.ejps.2020.105541.

    Article  CAS  PubMed  Google Scholar 

  18. Di L, Keefer C, Scott DO, Strelevitz TJ, Chang G, Bi Y-A, et al. Mechanistic insights from comparing intrinsic clearance values between human liver microsomes and hepatocytes to guide drug design. Eur J Med Chem. 2012;57:441–8. https://doi.org/10.1016/j.ejmech.2012.06.043.

    Article  CAS  PubMed  Google Scholar 

  19. Di L, Trapa P, Obach RS, Atkinson K, Bi Y-A, Wolford AC, et al. A novel relay method for determining low-clearance values. Drug Metab Dispos. 2012;40(9):1860–5. https://doi.org/10.1124/dmd.112.046425.

    Article  CAS  PubMed  Google Scholar 

  20. Jones RS, Leung C, Chang JH, Brown S, Liu N, Yan Z, et al. Application of empirical scalars to enable early prediction of human hepatic clearance using in vitro-in vivo extrapolation in drug discovery: an evaluation of 173 drugs. Drug Metab Dispos. 2022;50(8):1053–63. https://doi.org/10.1124/dmd.121.000784.

    Article  CAS  Google Scholar 

  21. Chan TS, Yu H, Moore A, Khetani SR, Tweedie D. Meeting the challenge of predicting hepatic clearance of compounds slowly metabolized by cytochrome P450 using a novel hepatocyte model. HepatoPac Drug Metab Dispos. 2013;41(12):2024–32. https://doi.org/10.1124/dmd.113.053397.

    Article  PubMed  Google Scholar 

  22. Francis LJ, Houston JB, Hallifax D. Impact of plasma protein binding in drug clearance prediction: a database analysis of published studies and implications for in vitro-in vivo extrapolation. Drug Metab Dispos. 2021;49(3):188–201. https://doi.org/10.1124/dmd.120.000294.

    Article  CAS  PubMed  Google Scholar 

  23. Poulin P, Hop CECA, Ho Q, Halladay JS, Haddad S, Kenny JR. Comparative assessment of in vitro-in vivo extrapolation methods used for predicting hepatic metabolic clearance of drugs. J Pharm Sci. 2012;101(11):4308–26. https://doi.org/10.1002/jps.23288.

    Article  CAS  PubMed  Google Scholar 

  24. Poulin P, Haddad S. Toward a new paradigm for the efficient in vitro-in vivo extrapolation of metabolic clearance in humans from hepatocyte data. J Pharm Sci. 2013;102(9):3239–51. https://doi.org/10.1002/jps.23502.

    Article  CAS  PubMed  Google Scholar 

  25. Saravanakumar A, Sadighi A, Ryu R, Akhlaghi F. Physicochemical properties, biotransformation, and transport pathways of established and newly approved medications: a systematic review of the top 200 most prescribed drugs vs. the FDA-approved drugs between 2005 and 2016. Clin Pharmacokinet. 2019;58(10):1281–94. https://doi.org/10.1007/s40262-019-00750-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martignoni M, Groothuis GMM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006;2(6):875–94. https://doi.org/10.1517/17425255.2.6.875.

    Article  CAS  PubMed  Google Scholar 

  27. Di L, Feng B, Goosen TC, Lai Y, Steyn SJ, Varma MV, et al. A perspective on the prediction of drug pharmacokinetics and disposition in drug research and development. Drug Metab Dispos. 2013;41(12):1975–93. https://doi.org/10.1124/dmd.113.054031.

    Article  CAS  PubMed  Google Scholar 

  28. Mathew S, Tess D, Burchett W, Chang G, Woody N, Keefer C, et al. Evaluation of prediction accuracy for volume of distribution in rat and human using in vitro, in vivo, PBPK and QSAR methods. J Pharm Sci (Philadelphia, PA, U S). 2021;110(4):1799–823. https://doi.org/10.1016/j.xphs.2020.12.005.

    Article  CAS  Google Scholar 

  29. Di L, Artursson P, Lennernas H, Avdeef A, Benet L, Houston B, et al. The critical role of passive permeability in designing successful drugs. ChemMedChem. 2020;15(20):1862–74. https://doi.org/10.1002/cmdc.202000419.

    Article  CAS  PubMed  Google Scholar 

  30. Di L, Rong H, Feng B. Demystifying brain penetration in central nervous system drug discovery. J Med Chem. 2013;56(1):2–12. https://doi.org/10.1021/jm301297f.

    Article  CAS  PubMed  Google Scholar 

  31. Nigade PB, Gundu J, Pai KS, Nemmani KVS, Talwar R. Prediction of volume of distribution in preclinical species and humans: application of simplified physiologically based algorithms. Xenobiotica. 2019;49(5):528–39. https://doi.org/10.1080/00498254.2018.1474399.

    Article  CAS  PubMed  Google Scholar 

  32. Jones RD, Jones HM, Rowland M, Gibson CR, Yates JWT, Chien JY, et al. PhRMA CPCDC initiative on predictive models of human pharmacokinetics, Part 2: Comparative assessment of prediction methods of human volume of distribution. J Pharm Sci. 2011;100(10):4074–89. https://doi.org/10.1002/jps.22553.

    Article  CAS  PubMed  Google Scholar 

  33. Price E, Kalvass JC, DeGoey D, Hosmane B, Doktor S, Desino K. Global analysis of models for predicting human absorption: QSAR, in vitro, and preclinical models. J Med Chem. 2021;64(13):9389–403. https://doi.org/10.1021/acs.jmedchem.1c00669.

    Article  CAS  PubMed  Google Scholar 

  34. Paine SW, Menochet K, Denton R, McGinnity DF, Riley RJ. Prediction of human renal clearance from preclinical species for a diverse set of drugs that exhibit both active secretion and net reabsorption. Drug Metab Dispos. 2011;39(6):1008–13. https://doi.org/10.1124/dmd.110.037267.

    Article  CAS  PubMed  Google Scholar 

  35. Mahmood I. Interspecies scaling of renally secreted drugs. Life Sci. 1998;63(26):2365–71. https://doi.org/10.1016/s0024-3205(98)00525-6.

    Article  CAS  PubMed  Google Scholar 

  36. Jansen K, Pou Casellas C, Groenink L, Wever KE, Masereeuw R. Humans are animals, but are animals human enough A systematic review and meta-analysis on interspecies differences in renal drug clearance. Drug Discovery Today. 2020;25(4):706–17. https://doi.org/10.1016/j.drudis.2020.01.018.

    Article  CAS  PubMed  Google Scholar 

  37. Riley RJ, McGinnity DF, Austin RP. A unified model for predicting human hepatic, metabolic clearance from in vitro intrinsic clearance data in hepatocytes and microsomes. Drug Metab Dispos. 2005;33(9):1304–11.

    Article  CAS  PubMed  Google Scholar 

  38. Tess DA, Ryu S, Di L. In vitro - in vivo extrapolation of hepatic clearance in preclinical species. Pharm Res. 2022;39(7):1615–32. https://doi.org/10.1007/s11095-022-03205-1.

    Article  CAS  PubMed  Google Scholar 

  39. Varma MV, Steyn SJ, Allerton C, El-Kattan AF. Predicting clearance mechanism in drug discovery: extended clearance classification system (ECCS). Pharm Res. 2015;32(12):3785–802. https://doi.org/10.1007/s11095-015-1749-4.

    Article  CAS  PubMed  Google Scholar 

  40. Lombardo F, Berellini G, Scott OR. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 1352 drug compounds. Drug Metab Dispos. 2018;46(11):1466–77. https://doi.org/10.1124/dmd.118.082966.

    Article  CAS  PubMed  Google Scholar 

  41. Li AP, Lu C, Brent JA, Pham C, Fackett A, Ruegg CE, et al. Cryopreserved human hepatocytes: characterization of drug-metabolizing enzyme activities and applications in higher throughput screening assays for hepatotoxicity, metabolic stability, and drug-drug interaction potential. Chem Biol Interact. 1999;121(1):17–35. https://doi.org/10.1016/s0009-2797(99)00088-5.

    Article  CAS  PubMed  Google Scholar 

  42. Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28(5):481–504.

    Article  CAS  PubMed  Google Scholar 

  43. Di L, Whitney-Pickett C, Umland JP, Zhang H, Zhang X, Gebhard DF, et al. Development of a new permeability assay using low-efflux MDCKII cells. J Pharm Sci. 2011;100(11):4974–85.

    Article  CAS  PubMed  Google Scholar 

  44. Novak JJ, Di L, Burchett W. Effects of low temperature on blood-to-plasma ratio measurement. Biopharm Drug Dispos. 2021;42(5):234–41.

    Article  CAS  PubMed  Google Scholar 

  45. Chang G, Woody N, Keefer C. Providing the ‘best’ lipophilicity assessment in a drug discovery environment. ChemRxiv. 2021. https://doi.org/10.26434/chemrxiv.14292485.v1.

  46. Hay T, Jones R, Beaumont K, Kemp M. Modulation of the partition coefficient between octanol and buffer at pH 7.4 and pKa to achieve the optimum balance of blood clearance and volume of distribution for a series of tetrahydropyran histamine type 3 receptor antagonists. Drug Metab Dispos. 2009;37(9):1864–70. https://doi.org/10.1124/dmd.109.027888.

    Article  CAS  PubMed  Google Scholar 

  47. Lombardo F, Shalaeva MY, Tupper KA, Gao F. ElogDoct: a tool for lipophilicity determination in drug discovery. 2. Basic and Neutral Compounds. J Med Chem. 2001;44(15):2490–7. https://doi.org/10.1021/jm0100990.

    Article  CAS  PubMed  Google Scholar 

  48. Li R, Bi Y-A, Lai Y, Sugano K, Steyn SJ, Trapa PE, et al. Permeability comparison between hepatocyte and low efflux MDCKII cell monolayer. AAPS J. 2014;16(4):802–9. https://doi.org/10.1208/s12248-014-9616-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shalaeva M, Kenseth J, Lombardo F, Bastin A. Measurement of dissociation constants (pKa values) of organic compounds by multiplexed capillary electrophoresis using aqueous and cosolvent buffers. J Pharm Sci. 2008;97(7):2581–606. https://doi.org/10.1002/jps.21287.

    Article  CAS  PubMed  Google Scholar 

  50. Poole SK, Patel S, Dehring K, Workman H, Poole CF. Determination of acid dissociation constants by capillary electrophoresis. J Chromatogr A. 2004;1037(1–2):445–54. https://doi.org/10.1016/j.chroma.2004.02.087.

    Article  CAS  PubMed  Google Scholar 

  51. Lin LI-K. Measuring Agreement. In: Chow S-c, editor. Encyclopedia of Biopharmaceutical Statistics 3rd ed. London, UK: Informa UK Limited; 2010. p. 745–50.

  52. Agarwal P, Ishida K, Reid DL, Gupta A. Clearance prediction for Amgen molecules against Extended Clearance Classification System (ECCS) and future directions. Drug Discov Today. 2021;26(1):10–6. https://doi.org/10.1016/j.drudis.2020.10.008.

    Article  PubMed  Google Scholar 

  53. Wood FL, Houston JB, Hallifax D. Clearance prediction methodology needs fundamental improvement: trends common to rat and human hepatocytes/microsomes and implications for experimental methodology. Drug Metab Dispos. 2017;45(11):1178–88.

    Article  CAS  PubMed  Google Scholar 

  54. Williamson B, Harlfinger S, McGinnity DF. Evaluation of the disconnect between hepatocyte and microsome intrinsic clearance and in vitro in vivo extrapolation performance. Drug Metab Dispos. 2020;48(11):1137–46. https://doi.org/10.1124/dmd.120.000131.

    Article  CAS  PubMed  Google Scholar 

  55. Jones HM, Barton HA, Lai Y, Bi Y-a, Kimoto E, Kempshall S, et al. Mechanistic pharmacokinetic modeling for the prediction of transporter-mediated disposition in humans from sandwich culture human hepatocyte data. Drug Metab Dispos. 2012;40(5):1007–17. https://doi.org/10.1124/dmd.111.042994.

    Article  CAS  PubMed  Google Scholar 

  56. Li R, Barton HA, Yates PD, Ghosh A, Wolford AC, Riccardi KA, et al. A “middle-out” approach to human pharmacokinetic predictions for OATP substrates using physiologically-based pharmacokinetic modeling. J Pharmacokinet Pharmacodyn. 2014;41(3):197–209. https://doi.org/10.1007/s10928-014-9357-1.

    Article  CAS  PubMed  Google Scholar 

  57. Ménochet K, Kenworthy KE, Houston JB, Galetin A. Use of mechanistic modeling to assess interindividual variability and interspecies differences in active uptake in human and rat hepatocytes. Drug Metab Dispos. 2012;40(9):1744–56. https://doi.org/10.1124/dmd.112.046193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kumar V, Yin M, Ishida K, Salphati L, Hop C, Rowbottom C, et al. Prediction of transporter-mediated rosuvastatin hepatic uptake clearance and drug interaction in humans using proteomics-informed REF approach. Drug Metab Dispos. 2021;49(2):159–68. https://doi.org/10.1124/dmd.120.000204.

    Article  CAS  PubMed  Google Scholar 

  59. Lee W, Koyama S, Morita K, Kiriake A, Kikuchi R, Chu X, et al. Cell-to-medium concentration ratio overshoot in the uptake of statins by human hepatocytes in suspension, but not in monolayer: kinetic analysis suggesting a partial loss of functional OATP1Bs. AAPS J. 2020;22(6):133. https://doi.org/10.1208/s12248-020-00512-6.

    Article  CAS  PubMed  Google Scholar 

  60. Yoshikado T, Lee W, Toshimoto K, Morita K, Kiriake A, Chu X, et al. Evaluation of hepatic uptake of OATP1B substrates by short term-cultured plated human hepatocytes: comparison with isolated suspended hepatocytes. J Pharm Sci. 2021;110(1):376–87. https://doi.org/10.1016/j.xphs.2020.10.041.

    Article  CAS  PubMed  Google Scholar 

  61. Mao J, Doshi U, Wright M, Hop C, Li AP, Chen Y. Prediction of the pharmacokinetics of pravastatin as an OATP substrate using plateable human hepatocytes with human plasma data and PBPK modeling. CPT Pharmacometrics Syst Pharmacol. 2018;7(4):251–8. https://doi.org/10.1002/psp4.12283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tess DA, Eng H, Kalgutkar AS, Litchfield J, Edmonds DJ, Griffith DA, et al. Predicting the human hepatic clearance of acidic and zwitterionic drugs. J Med Chem. 2020;63(20):11831–44. https://doi.org/10.1021/acs.jmedchem.0c01033.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors greatly appreciate the input and discussion from Stefanus Steyn, Manthena Varma, and many Pfizer colleagues.

Author information

Authors and Affiliations

Authors

Contributions

David Tess, George C. Chang, Christopher Keefer, Anthony Carlo, Rhys Jones, and Li Di all contributed to the following areas: substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; and drafting the work or revising it critically for important intellectual content; and final approval of the version to be published; and agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Li Di.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tess, D., Chang, G.C., Keefer, C. et al. In Vitro-In Vivo Extrapolation and Scaling Factors for Clearance of Human and Preclinical Species with Liver Microsomes and Hepatocytes. AAPS J 25, 40 (2023). https://doi.org/10.1208/s12248-023-00800-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-023-00800-x

Keywords

Navigation