Skip to main content

Advertisement

Log in

A Critical Overview of the Biological Effects of Excipients (Part I): Impact on Gastrointestinal Absorption

  • Review Article
  • Theme: The Biological Effect of Pharmaceutical Excipients
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Traditionally, excipients have been considered in drug development from the perspective of their influence on drug solubility, manufacturability, and ability to control in vitro and in vivo drug release. These effects have been largely evaluated through studies involving in vitro dissolution methods. However, there is a growing awareness that what had previously been considered biologically inert excipients can exert numerous in vivo effects. This includes the potential to change gastrointestinal (GI) transit time, enterocyte passive transcellular or paracellular permeability, active transport activity, or presystemic drug metabolism. In this critical overview of the biological effects of excipients (Part I), we provide a summary of select published studies that explore these various in vivo factors. We also include a table that points readers to published reviews that list a range of excipients known to have biological activity. A subsequent discussion on in vitro, in vivo, and in silico methods that can be used to explore these excipient effects is provided in a separate (Part 2) continuation of this critical overview.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Reker D, Blum S, Steiger C, Anger K, Sommer J, Fanikos J, et al. “Inactive” ingredients in oral medications. Sci Transl Med 2019;11.

  2. FDA inactive ingredients database accessed in march, 2022. Available from:https://www.accessdata.fda.gov/scripts/cder/iig/index.Cfm.

  3. Irwin JJ, Pottel J, Zou L, Wen H, Zuk S, Zhang X, et al. A molecular basis for innovation in drug excipients. Clin Pharmacol Ther. 2017;101:320–3.

    Article  CAS  PubMed  Google Scholar 

  4. Beg S, Hasnain MS, Rahman M, Swain S. Introduction to quality by design (QbD): fundamentals, principles, and applications. Pharm Qual by Des Princ Appl. 2019.

  5. Dave VS. QbD considerations for excipient manufacturing. Pharm Qual by Des Princ. Appl. 2019.

  6. Sugita K, Takata N, Yonemochi E. Dose-dependent solubility-permeability interplay for poorly soluble drugs under non-sink conditions. Pharmaceutics. 2021;13:1–19.

    Article  CAS  Google Scholar 

  7. Goole J, Lindley DJ, Roth W, Carl SM, Amighi K, Kauffmann JM, et al. The effects of excipients on transporter mediated absorption. Int J Pharm. 2010:17–31.

  8. Zhang W, Li Y, Zou P, Wu M, Zhang Z, Zhang T. The effects of pharmaceutical excipients on gastrointestinal tract metabolic enzymes and transporters-an update. AAPS J. 2016;18:830–43.

    Article  CAS  PubMed  Google Scholar 

  9. Patel R, Barker J, ElShaer A. Pharmaceutical excipients and drug metabolism: a mini-review. Int J Mol Sci. 2020;21:1–21.

    Google Scholar 

  10. Fine-Shamir N, Beig A, Zur M, Lindley D, Miller JM, Dahan A. Toward successful cyclodextrin based solubility-enabling formulations for oral delivery of lipophilic drugs: solubility-permeability trade-off, biorelevant dissolution, and the unstirred water layer. Mol Pharm. 2017;14:2138–46.

    Article  CAS  PubMed  Google Scholar 

  11. Cox F, Khalib K, Conlon N. PEG that reaction: a case series of allergy to polyethylene glycol. J Clin Pharmacol. 2021;61:832–5.

    Article  CAS  PubMed  Google Scholar 

  12. Lavan M, Knipp G. Considerations for determining direct versus indirect functional effects of solubilizing excipients on drug transporters for enhancing bioavailability. J Pharm Sci. 2020:1833–45.

  13. Sjögren E, Abrahamsson B, Augustijns P, Becker D, Bolger MB, Brewster M, et al. In vivo methods for drug absorption - comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. Eur J Pharm Sci. 2014;57:99–151.

    Article  PubMed  CAS  Google Scholar 

  14. Flanagan T. Potential for pharmaceutical excipients to impact absorption: a mechanistic review for BCS class 1 and 3 drugs. Eur J Pharm Biopharm. 2019:130–8.

  15. Buggins TR, Dickinson PA, Taylor G. The effects of pharmaceutical excipients on drug disposition [Internet]. Adv Drug Deliv Rev. 2007 [cited 2021 Nov 14]. p. 1482–503. Available from: https://reader.elsevier.com/reader/sd/pii/S0169409X07001810?token=A050B2306D92AAEC015A93784D57387E065317786AB7CA7B4D39423C49D7AA273384CD8094B77B94BB04688297C914F6&originRegion=eu-west-1&originCreation=20211114210308

  16. Constantinides PP, Wasan KM. Lipid formulation strategies for enhancing intestinal transport and absorption of P-glycoprotein (P-gp) substrate drugs: in vitro/in vivo case studies. J Pharm Sci Elsevier. 2007;96:235–48.

    Article  CAS  Google Scholar 

  17. Aungst BJ. Absorption enhancers: applications and advances. AAPS J. 2012;14:10–8.

    Article  CAS  PubMed  Google Scholar 

  18. Al-Ali AAA, Nielsen RB, Steffansen B, Holm R, Nielsen CU. Nonionic surfactants modulate the transport activity of ATP-binding cassette (ABC) transporters and solute carriers (SLC): relevance to oral drug absorption. Int J Pharm. 2019:410–33.

  19. McFeely SJ, Yu J, Wang Y, Wu C, Ragueneau-Majlessi I. Excipient knowledgebase: development of a comprehensive tool for understanding the disposition and interaction potential of common excipients. CPT Pharmacometrics Syst Pharmacol. 2021;10:953–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Metry M, Polli JE. Evaluation of excipient risk in BCS class I and III biowaivers. AAPS J. 2022;24:1–11.

    Article  Google Scholar 

  21. Adkin DA, Davis S, Sparrow RA, Huckle PD, Wilding I. The effect of mannitol on the oral bioavailability of cimetidine. J Pharm Sci. 1995;84:1405–9.

    Article  CAS  PubMed  Google Scholar 

  22. Adkin DA, Davis SS, Sparrow RA, Huckle PD, Phillips AJ, Wilding I. The effects of pharmaceutical excipients on small intestinal transit. Br J Clin Pharmacol. 1995;39:381–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sequeira IR, Lentle RG, Kruger MC, Hurst RD. Assessment of the effect of intestinal permeability probes (lactulose and mannitol) and other liquids on digesta residence times in various segments of the gut determined by wireless motility capsule: a randomised controlled trial. PLoS One. 2015;10.

  24. Clinical pharmacology and biopharmaceutics review. Accessed in March, 2021. Available from:https://www.accessdata.fda.gov/drugsatfda_docs/nda/2010/022368Orig1s000ClinPharmR.pdf.

  25. Salminen EK, Salminen SJ, Porkka L, Kwasowski P, Marks V, Koivistoinen PE. Xylitol vs glucose: effect on the rate of gastric emptying and motilin, insulin, and gastric inhibitory polypeptide release. Am J Clin Nutr. 1989;49:1228–32.

    Article  CAS  PubMed  Google Scholar 

  26. Madsen JL, Linnet J, Rumessen JJ. Effect of nonabsorbed amounts of a fructose-sorbitol mixture on small intestinal transit in healthy volunteers. Dig Dis Sci. 2006;51:147–53.

    Article  CAS  PubMed  Google Scholar 

  27. Staniforth DH. Comparison of orocaecal transit times assessed by the lactulose/breath hydrogen and the sulphasalazine/sulphapyridine methods. Gut. 1989;30:978–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Read NW, Miles CA, Fisher D, Holgate AM, Kime ND, Mitchell MA, et al. Transit of a meal through the stomach, small intestine, and colon in normal subjects and its role in the pathogenesis of diarrhea. Gastroenterology. 1980;79:1276–82.

    Article  CAS  PubMed  Google Scholar 

  29. Vaithianathan S, Haidar SH, Zhang X, Jiang W, Avon C, Dowling TC, et al. Effect of common excipients on the oral drug absorption of biopharmaceutics classification system class 3 drugs cimetidine and acyclovir. J Pharm Sci. 2016;105:996–1005.

    Article  CAS  PubMed  Google Scholar 

  30. Koch KM, Parr AF, Tomlinson JJ, Sandefer EP, Digenis GA, Donn KH, et al. Effect of sodium acid pyrophosphate on ranitidine bioavailability and gastrointestinal transit time. Pharm Res. 1993;10:1027–30.

    Article  CAS  PubMed  Google Scholar 

  31. Kortejärvi H, Yliperttula M, Dressman JB, Junginger HE, Midha KK, Shah VP, et al. Biowaiver monographs for immediate release solid oral dosage forms: ranitidine hydrochloride. J Pharm Sci. 2005;94:1617–25.

    Article  PubMed  CAS  Google Scholar 

  32. Williams MF, Dukes GE, Heizer W, Han Y-H, Hermann DJ, Lampkin T, et al. Influence of gastrointestinal site of drug delivery on the absorption characteristics of ranitidine. Pharm Res. 1992;9:1190–4.

    Article  CAS  PubMed  Google Scholar 

  33. Basit AW, Newton JM, Short MD, Waddington WA, Ell PJ, Lacey LF. The effect of polyethylene glycol 400 on gastrointestinal transit: implications for the formulation of poorly-water soluble drugs. Pharm Res. 2001;18:1146–50.

    Article  CAS  PubMed  Google Scholar 

  34. Basit AW, Podczeck F, Newton JM, Waddington WA, Ell PJ, Lacey LF. Influence of polyethylene glycol 400 on the gastrointestinal absorption of ranitidine. Pharm Res. 2002;19:1368–74.

    Article  CAS  PubMed  Google Scholar 

  35. Riley S, Kim M, Sutcliffe F, Kapas M, Rowland M, Turnberg L. Effects of a non-absorbable osmotic load on drug absorption in healthy volunteers. Br J Clin Pharmacol. 1992;34:40–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. FDA label: Accessed in March, 2021. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/018240s031lbl.pdf.

  37. Beermann B, Groschinsky-Grind M, Rosén A. Absorption, metabolism, and excretion of hydrochlorothiazide. Clin Pharmacol Ther. 1976;19:531–7.

    Article  CAS  PubMed  Google Scholar 

  38. FDA product label. Accessed in March, 2021. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/020504s026lbl.pdf.

  39. FDA product label. Accessed in March, 2021. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/018667s036lbl.pdf.

  40. Terao T, Matsuda K, Shouji H. Improvement in site-specific intestinal absorption of furosemide by Eudragit L100-55. J Pharm Pharmacol. 2010;53:433–40.

    Article  Google Scholar 

  41. Hogben CAM, Schanker LS, Tocco DJ, Brodie BB. Absorption of drugs from the stomach. II. The human. J Pharmacol Exp Ther. 1957;120:540–5.

    CAS  PubMed  Google Scholar 

  42. Schulze JDR, Waddington WA, Ell PJ, Parsons GE, Coffin MD, Basit AW. Concentration-dependent effects of polyethylene glycol 400 on gastrointestinal transit and drug absorption. Pharm Res. 2003;20:1984–8.

    Article  CAS  PubMed  Google Scholar 

  43. Bourdet DL, Pollack GM, Thakker DR. Intestinal absorptive transport of the hydrophilic cation ranitidine: a kinetic modeling approach to elucidate the role of uptake and efflux transporters and paracellular vs. transcellular transport in Caco-2 cells. Pharm Res. 2006;23:1178–87.

    Article  CAS  PubMed  Google Scholar 

  44. Iwanaga K, Ono S, Narioka K, Kakemi M, Morimoto K, Yamashita S, et al. Application of surface-coated liposomes for oral delivery of peptide: effects of coating the liposome’s surface on the GI transit of insulin. J Pharm Sci. 1999;88:248–52.

    Article  CAS  PubMed  Google Scholar 

  45. Peppas NA, Sahlin JJ. Hydrogels as mucoadhesive and bioadhesive materials: a review. Biomaterials. 1996;17:1553–61.

    Article  CAS  PubMed  Google Scholar 

  46. Wong CY, Al-Salami H, Dass CR. Current status and applications of animal models in pre-clinical development of orally administered insulin-loaded nanoparticles. J Drug Target. 2020:882–903.

  47. Hardison WGM, Tomaszewski N, Grundy SM. Effect of acute alteratioris in small bowel transit time upon the biliary excretion rate of bile acids. Gastroenterology. 1979;76:568–74.

    Article  CAS  PubMed  Google Scholar 

  48. Everson GT, Lawson MJ, McKinley C, Showalter R, Kern F. Gallbladder and small intestinal regulation of biliary lipid secretion during intraduodenal infusion of standard stimuli. J Clin Invest. 1983;71:596–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Akiyama Y, Ito S, Fujita T, Sugano K. Prediction of negative food effect induced by bile micelle binding on oral absorption of hydrophilic cationic drugs. Eur J Pharm Sci. 2020;155.

  50. Avdeef A. Absorption and drug development. 2nd ed. United States: Absorpt. Drug Dev; 2012.

    Book  Google Scholar 

  51. Avdeef A, Kansy M, Bendels S, Tsinman K. Absorption-excipient-pH classification gradient maps: sparingly soluble drugs and the pH partition hypothesis. Eur J Pharm Sci. 2008;33:29–41.

    Article  CAS  PubMed  Google Scholar 

  52. Sugano K, Nabuchi Y, Machida M, Aso Y. Prediction of human intestinal permeability using artificial membrane permeability. Int J Pharm. 2003;257:245–51.

    Article  CAS  PubMed  Google Scholar 

  53. Miller JM, Beig A, Krieg BJ, Carr RA, Borchardt TB, Amidon GE, et al. The solubility–permeability interplay: mechanistic modeling and predictive application of the impact of micellar solubilization on intestinal permeation. Mol Pharm. 2011;8:1848–56.

    Article  CAS  PubMed  Google Scholar 

  54. Dahan A, Miller JM, Hoffman A, Amidon GE, Amidon GL. The solubility–permeability interplay in using cyclodextrins as pharmaceutical solubilizers: mechanistic modeling and application to progesterone. J Pharm Sci. 2010;99:2739–49.

    Article  CAS  PubMed  Google Scholar 

  55. Dahan A, Beig A, Lindley D, Miller JM. The solubility–permeability interplay and oral drug formulation design: two heads are better than one. Adv Drug Deliv Rev Elsevier. 2016;101:99–107.

    Article  CAS  Google Scholar 

  56. Beig A, Miller JM, Lindley D, Carr RA, Zocharski P, Agbaria R, et al. Head-to-head comparison of different solubility-enabling formulations of etoposide and their consequent solubility–permeability interplay. J Pharm Sci. 2015;104:2941–7.

    Article  CAS  PubMed  Google Scholar 

  57. Borbás E, Sinkó B, Tsinman O, Tsinman K, Kiserdei É, Démuth B, et al. Investigation and mathematical description of the real driving force of passive transport of drug molecules from supersaturated solutions. Mol Pharm. 2016;13:3816–26.

    Article  PubMed  CAS  Google Scholar 

  58. Anderson JM, Van Itallie CM. Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol - Gastrointest Liver Physiol. 1995;269.

  59. Weström B, Arévalo Sureda E, Pierzynowska K, Pierzynowski SG, Pérez-Cano F-J. The immature gut barrier and its importance in establishing immunity in newborn mammals. Front Immunol Frontiers; 2020;1153.

  60. Visser J, Rozing J, Sapone A, Lammers K, Fasano A. Tight junctions, intestinal permeability, and autoimmunity: celiac disease and type 1 diabetes paradigms. Ann N Y Acad Sci. 2009;1165:195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ali RAR, Egan LJ. Gastroesophageal reflux disease in pregnancy. Best Pract Res Clin Gastroenterol. 2007;21:793–806.

    Article  PubMed  Google Scholar 

  62. Madla CM, Gavins FKH, Merchant HA, Orlu M, Murdan S, Basit AW. Let’s talk about sex: differences in drug therapy in males and females. Adv Drug Deliv Rev. 2021:113804.

  63. Harrison-Woolrych M. Medicines for women: medicines for half the world. Med Women Springer International Publishing. 2015:3–40.

  64. Russell TL, Berardi RR, Barnett JL, Dermentzoglou LC, Jarvenpaa KM, Schmaltz SP, et al. Upper gastrointestinal pH in seventy-nine healthy, elderly, north american men and women. Pharm Res An Off J Am Assoc Pharm Sci. 1993;10:187–96.

    CAS  Google Scholar 

  65. Bai JPF, Burckart GJ, Mulberg AE. Literature review of gastrointestinal physiology in the elderly, in pediatric patients, and in patients with gastrointestinal diseases. J Pharm Sci. 2016:476–83.

  66. Beig A, Agbaria R, Dahan A. Oral delivery of lipophilic drugs: the tradeoff between solubility increase and permeability decrease when using cyclodextrin-based formulations. Tajmir-Riahi H-A, editor. PLoS One 2013;8:e68237.

  67. Beig A, Agbaria R, Dahan A. The use of captisol (SBE7-β-CD) in oral solubility-enabling formulations: comparison to HPβCD and the solubility-permeability interplay. Eur J Pharm Sci. 2015;77:73–8.

    Article  CAS  PubMed  Google Scholar 

  68. Braga SS. Cyclodextrins: Emerging medicines of the new millennium. Biomolecules. 2019;9.

  69. Dahan A, Beig A, Ioffe-Dahan V, Agbaria R, Miller JM. The twofold advantage of the amorphous form as an oral drug delivery practice for lipophilic compounds: increased apparent solubility and drug flux through the intestinal membrane. AAPS J. 2013;15:347–53.

    Article  CAS  PubMed  Google Scholar 

  70. Stappaerts J, Berben P, Cevik I, Augustijns P. The effect of 2-hydroxypropyl-β-cyclodextrin on the intestinal permeation through mucus. Eur J Pharm Sci. 2018;114:238–44.

    Article  CAS  PubMed  Google Scholar 

  71. Dahan A, Miller JM. The solubility–permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS J. 2012;14:244–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mudra DR, Borchardt RT. Absorption barriers in the rat intestinal mucosa: 1. Application of an in situ perfusion model to simultaneously assess drug permeation and metabolism. J Pharm Sci. 2010;99:982–98.

    Article  CAS  PubMed  Google Scholar 

  73. Hens B, Brouwers J, Corsetti M, Augustijns P. Gastrointestinal behavior of nano- and microsized fenofibrate: in vivo evaluation in man and in vitro simulation by assessment of the permeation potential. Eur J Pharm Sci. 2015;77:40–7.

    Article  CAS  PubMed  Google Scholar 

  74. Scott Swenson E, Curatolo WJ. (C) Means to enhance penetration. (2) intestinal permeability enhancement for proteins, peptides and other polar drugs: mechanisms and potential toxicity. Adv Drug Deliv Rev 1992. p. 39–92.

  75. Tomita M, Shiga M, Hayashi M, Awazu S. Enhancement of colonic drug absorption by the paracellular permeation route. Pharm Res An Off J Am Assoc Pharm Sci. 1988;5:341–6.

    CAS  Google Scholar 

  76. Medicines Agency E. Cyclodextrins used as excipients [internet]. 2017. Available from: www.ema.europa.eu/contact

  77. Dahlgren D, Olander T, Sjöblom M, Hedeland M, Lennernäs H. Effect of paracellular permeation enhancers on intestinal permeability of two peptide drugs, enalaprilat and hexarelin, in rats. Acta Pharm Sin B. 2021;11:1667–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gupta V, Hwang BH, Doshi N, Mitragotri S. A permeation enhancer for increasing transport of therapeutic macromolecules across the intestine. J Control Release. 2013;172:541–9.

    Article  CAS  PubMed  Google Scholar 

  79. Riad LE, Sawchuk RJ. Effect of polyethylene glycol 400 on the intestinal permeability of carbamazepine in the rabbit. Pharm Res. 1991;8:491–7.

    Article  CAS  PubMed  Google Scholar 

  80. Beig A, Miller JM, Dahan A. Accounting for the solubility-permeability interplay in oral formulation development for poor water solubility drugs: the effect of PEG-400 on carbamazepine absorption. Eur J Pharm Biopharm. 2012;81:386–91.

    Article  CAS  PubMed  Google Scholar 

  81. Ma TY, Nguyen D, Bui V, Nguyen H, Hoa N. Ethanol modulation of intestinal epithelial tight junction barrier. Am J Physiol - Gastrointest Liver Physiol. 1999;276.

  82. Borbás E, Nagy ZK, Nagy B, Balogh A, Farkas B, Tsinman O, et al. The effect of formulation additives on in vitro dissolution-absorption profile and in vivo bioavailability of telmisartan from brand and generic formulations. Eur J Pharm Sci. 2018;114:310–7.

    Article  PubMed  CAS  Google Scholar 

  83. Liu H, Taylor LS, Edgar KJ. The role of polymers in oral bioavailability enhancement; a review. Polymer (Guildf) 2015. p. 399–415.

  84. Borbás E, Tőzsér P, Tsinman K, Tsinman O, Takács-Novák K, Völgyi G, et al. Effect of formulation additives on drug transport through size-exclusion membranes. Mol Pharm. 2018;15:3308–17.

    Article  PubMed  CAS  Google Scholar 

  85. Borbás E, Kádár S, Tsinman K, Tsinman O, Csicsák D, Takács-Novák K, et al. Prediction of bioequivalence and food effect using flux- and solubility-based methods. Mol Pharm. 2019;16:4121–30.

    Article  PubMed  CAS  Google Scholar 

  86. Thanou MM, Kotzé AF, Scharringhausen T, Lueßen HL, De Boer AG, Verhoef JC, et al. Effect of degree of quaternization of N-trimethyl chitosan chloride for enhanced transport of hydrophilic compounds across intestinal Caco-2 cell monolayers. J Control Release. 2000;64:15–25.

    Article  CAS  PubMed  Google Scholar 

  87. Kontogiannidou E, Meikopoulos T, Virgiliou C, Bouropoulos N, Gika H, Vizirianakis IS, et al. Towards the development of self-nano-emulsifying drug delivery systems (SNEDDS) containing trimethyl chitosan for the oral delivery of amphotericin B: in vitro assessment and cytocompatibility studies. J Drug Deliv Sci Technol. 2020;56:101524.

    Article  CAS  Google Scholar 

  88. Engel A, Oswald S, Siegmund W, Keiser M. Pharmaceutical excipients influence the function of human uptake transporting proteins. Mol Pharm. 2012;9:2577–81.

    Article  CAS  PubMed  Google Scholar 

  89. Shono Y, Nishihara H, Matsuda Y, Furukawa S, Okada N, Fujita T, et al. Modulation of intestinal P-glycoprotein function by cremophor EL and other surfactants by an in vitro diffusion chamber method using the isolated rat intestinal membranes. J Pharm Sci. 2004;93:877–85.

    Article  CAS  PubMed  Google Scholar 

  90. Johnson BM, Charman WN, Porter CJH. An in vitro examination of the impact of polyethylene glycol 400, pluronic p85, and vitamin e d-a-tocopheryl polyethylene glycol 1000 succinate on p-glycoprotein efflux and enterocyte-based metabolism in excised rat intestine. AAPS J. 2002;4:E40.

    Article  Google Scholar 

  91. Rege BD, Kao JPY, Polli JE. Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. Eur J Pharm Sci. 2002;16:237–46.

    Article  CAS  PubMed  Google Scholar 

  92. Hanke U, May K, Rozehnal V, Nagel S, Siegmund W, Weitschies W. Commonly used nonionic surfactants interact differently with the human efflux transporters ABCB1 (p-glycoprotein) and ABCC2 (MRP2). Eur J Pharm Biopharm. 2010;76:260–8.

    Article  CAS  PubMed  Google Scholar 

  93. Soodvilai S, Soodvilai S, Chatsudthipong V, Ngawhirunpat T, Rojanarata T, Opanasopit P. Interaction of pharmaceutical excipients with organic cation transporters. Int J Pharm. 2017;520:14–20.

    Article  CAS  PubMed  Google Scholar 

  94. Li L, Yi T, Lam CWK. Inhibition of human efflux transporter ABCC2 (MRP2) by self-emulsifying drug delivery system: influences of concentration and combination of excipients. J Pharm Pharm Sci. 2014;17:447–60.

    Article  PubMed  Google Scholar 

  95. Li L, Yi T, Lam CWK. Interactions between human multidrug resistance related protein (MRP2; ABCC2) and excipients commonly used in self-emulsifying drug delivery systems (SEDDS). Int J Pharm. 2013;447:192–8.

    Article  CAS  PubMed  Google Scholar 

  96. Nozawa T, Toyobuku H, Kobayashi D, Kuruma K, Tsuji A, Tamai I. Enhanced intestinal absorption of drugs by activation of peptide transporter PEPT1 using proton-releasing polymer. J Pharm Sci. 2003;92:2208–16.

    Article  CAS  PubMed  Google Scholar 

  97. Irie M, Terada T, Katsura T, Matsuoka S, Inui KI. Computational modelling of H+-coupled peptide transport via human PEPT1. J Physiol. 2005;565:429–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yamagata T, Kusuhara H, Morishita M, Takayama K, Benameur H, Sugiyama Y. Effect of excipients on breast cancer resistance protein substrate uptake activity. J Control Release. 2007;124:1–5.

    Article  CAS  PubMed  Google Scholar 

  99. Takizawa Y, Kishimoto H, Nakagawa M, Sakamoto N, Tobe Y, Furuya T, et al. Effects of pharmaceutical excipients on membrane permeability in rat small intestine. Int J Pharm. 2013;453:363–70.

    Article  CAS  PubMed  Google Scholar 

  100. Tayrouz Y, Ding R, Burhenne J, Riedel KD, Weiss J, Hoppe-Tichy T, et al. Pharmacokinetic and pharmaceutic interaction between digoxin and Cremophor RH40. Clin Pharmacol Ther. 2003;73:397–405.

    Article  CAS  PubMed  Google Scholar 

  101. Martin-Facklam M, Burhenne J, Ding R, Fricker R, Mikus G, Walter-Sack I, et al. Dose-dependent increase of saquinavir bioavailability by the pharmaceutic aid cremophor EL. Br J Clin Pharmacol. 2002;53:576–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bogman K, Zysset Y, Degen L, Hopfgartner G, Gutmann H, Alsenz J, et al. P-glycoprotein and surfactants: effect on intestinal talinolol absorption. Clin Pharmacol Ther. 2005;77:24–32.

    Article  CAS  PubMed  Google Scholar 

  103. Gerber W, Hamman JH, Steyn JD. Excipient-drug pharmacokinetic interactions: effect of disintegrants on efflux across excised pig intestinal tissues. J Food Drug Anal. 2018;26:S115–24.

    Article  CAS  PubMed  Google Scholar 

  104. Mai Y, Dou L, Murdan S, Basit AW. An animal’s sex influences the effects of the excipient PEG 400 on the intestinal P-gp protein and mRNA levels, which has implications for oral drug absorption. Eur J Pharm Sci. 2018;120:53–60.

    Article  CAS  PubMed  Google Scholar 

  105. Mai Y, Ashiru-Oredope DAI, Yao Z, Dou L, Madla CM, Taherali F, et al. Boosting drug bioavailability in men but not women through the action of an excipient. Int J Pharm. 2020;587:119678.

    Article  CAS  PubMed  Google Scholar 

  106. Zou L, Spanogiannopoulos P, Pieper LM, Chien HC, Cai W, Khuri N, et al. Bacterial metabolism rescues the inhibition of intestinal drug absorption by food and drug additives. Proc Natl Acad Sci U S A. 2020;117:16009–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zou L, Pottel J, Khuri N, Ngo HX, Ni Z, Tsakalozou E, et al. Interactions of oral molecular excipients with breast cancer resistance protein. BCRP Mol Pharm. 2020;17:748–56.

    Article  CAS  PubMed  Google Scholar 

  108. Zou L, Ni Z, Tsakalozou E, Giacomini KM. Impact of pharmaceutical excipients on oral drug absorption: a focus on intestinal drug transporters. Clin Pharmacol Ther. 2019;105:323–5.

    Article  PubMed  Google Scholar 

  109. Giacomini KM, Huang S-M, Tweedie DJ. Membrane transporters in drug development the international transporter consortium. Nat Rev Drug Discov. 2010;9:215–36.

    Article  CAS  PubMed  Google Scholar 

  110. Zhang L, Zhang Y, Strong JM, Reynolds KS, Huang SM. A regulatory viewpoint on transporter-based drug interactions. Xenobiotica. 2008;38:709–24.

    Article  CAS  PubMed  Google Scholar 

  111. Pottel J, Armstrong D, Zou L, Fekete A, Huang X-P, et al. The activities of drug inactive ingredients on biological targets. 2020;369:403–13.

    CAS  Google Scholar 

  112. Taskar KS, Pilla Reddy V, Burt H, Posada MM, Varma M, Zheng M, et al. Physiologically-based pharmacokinetic models for evaluating membrane transporter mediated drug-drug interactions: current capabilities, case studies, future opportunities, and recommendations. Clin Pharmacol Ther. 2020;107:1082–115.

    Article  PubMed  Google Scholar 

  113. Giacomini KM, Galetin A, Huang SM. The international transporter consortium: summarizing advances in the role of transporters in drug development. Clin Pharmacol Ther. 2018;104:766–71.

    Article  PubMed  Google Scholar 

  114. Wang HJ, Hsiong CH, Ho ST, Lin MJ, Shih TY, Huang PW, et al. Commonly used excipients modulate UDP-glucuronosyltransferase 2B7 activity to improve nalbuphine oral bioavailability in humans. Pharm Res. 2014;31:1676–88.

    Article  CAS  PubMed  Google Scholar 

  115. Ren X, Mao X, Si L, Cao L, Xiong H, Qiu J, et al. Pharmaceutical excipients inhibit cytochrome P450 activity in cell free systems and after systemic administration. Eur J Pharm Biopharm. 2008;70:279–88.

    Article  CAS  PubMed  Google Scholar 

  116. Ren X, Mao X, Cao L, Xue K, Si L, Qiu J, et al. Nonionic surfactants are strong inhibitors of cytochrome P450 3A biotransformation activity in vitro and in vivo. Eur J Pharm Sci. 2009;36:401–11.

    Article  CAS  PubMed  Google Scholar 

  117. Tolle-Sander S, Rautio J, Wring S, Polli JW, Polli JE. Midazolam exhibits characteristics of a highly permeable P-glycoprotein substrate. Pharm Res. 2003;20:757–64.

    Article  CAS  PubMed  Google Scholar 

  118. Rubert J, Schweiger PJ, Mattivi F, Tuohy K, Jensen KB, Lunardi A. Intestinal organoids: a tool for modelling diet–microbiome–host interactions. Trends Endocrinol Metab. 2020;31:848–58.

    Article  CAS  PubMed  Google Scholar 

  119. Zietek T, Giesbertz P, Ewers M, Reichart F, Weinmüller M, Urbauer E, et al. Organoids to study intestinal nutrient transport, drug uptake and metabolism – update to the human model and expansion of applications. Front Bioeng. Biotechnol. 2020;8.

  120. Maher S, Brayden DJ, Casettari L, Illum L. Application of permeation enhancers in oral delivery of macromolecules: an update. Pharmaceutics. 2019;11.

  121. Xia CQ, Xiao G, Liu N, Pimprale S, Fox L, Patten CJ, et al. Comparison of species differences of P-glycoproteins in beagle dog, rhesus monkey, and human using ATPase activity assays. Mol Pharm. 2006;3:78–86.

    Article  CAS  PubMed  Google Scholar 

  122. Martinez MN, Mochel JP, Neuhoff S, Pade D. Comparison of canine and human physiological factors: understanding interspecies differences that impact drug pharmacokinetics. AAPS J. 2021:59.

  123. Dahlgren D, Roos C, Johansson P, Tannergren C, Lundqvist A, Langguth P, et al. The effects of three absorption-modifying critical excipients on the in vivo intestinal absorption of six model compounds in rats and dogs. Int J Pharm. 2018;547:158–68.

    Article  CAS  PubMed  Google Scholar 

  124. Roda G, Sartini A, Zambon E, Calafiore A, Marocchi M, Caponi A, et al. Intestinal epithelial cells in inflammatory bowel diseases. World J Gastroenterol. 2010;16:4264–71.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Manuscript conceptualization: Marilyn Martinez, Fang Wu, and Balint Sinko.

Manuscript development lead: Marilyn Martinez.

Manuscript development co-leads: Fang Wu and Balint Sinko.

Introduction and conclusion: Marilyn Martinez, Fang Wu, and Balint Sinko.

Excipient effects on intestinal transit time: Marilyn Martinez and Talia Flanagan.

Excipient effect on passive transport: Balint Sinko and Enikő Borbás.

Effect of excipients on active transporters: Eleftheria Tsakalozou and Kathleen Giacomini.

Excipient effects on metabolism: Talia Flanagan.

Species-excipient relationships: Marilyn Martinez.

Points to ponder: All co-authors.

Corresponding author

Correspondence to Marilyn N. Martinez.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Disclaimer

The contents of this manuscript reflect the views of the authors and should not be construed to represent FDA’s views or policies.

Additional information

Guest Editors: Marilyn N. Martinez, Balint Sinko and Fang Wu

Marilyn N. Martinez, Balint Sinko and Fang Wu are Guest Editors for the theme issue on the Biological Effects of Excipients.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, M.N., Sinko, B., Wu, F. et al. A Critical Overview of the Biological Effects of Excipients (Part I): Impact on Gastrointestinal Absorption. AAPS J 24, 60 (2022). https://doi.org/10.1208/s12248-022-00711-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-022-00711-3

KEY WORDS

Navigation