Skip to main content
Log in

Incorporation of the Time-Varying Postprandial Increase in Splanchnic Blood Flow into a PBPK Model to Predict the Effect of Food on the Pharmacokinetics of Orally Administered High-Extraction Drugs

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

ABSTRACT

Following a meal, a transient increase in splanchnic blood flow occurs that can result in increased exposure to orally administered high-extraction drugs. Typically, physiologically based pharmacokinetic (PBPK) models have incorporated this increase in blood flow as a time-invariant fed/fasted ratio, but this approach is unable to explain the extent of increased drug exposure. A model for the time-varying increase in splanchnic blood flow following a moderate- to high-calorie meal (TV-Q Splanch) was developed to describe the observed data for healthy individuals. This was integrated within a PBPK model and used to predict the contribution of increased splanchnic blood flow to the observed food effect for two orally administered high-extraction drugs, propranolol and ibrutinib. The model predicted geometric mean fed/fasted AUC and C max ratios of 1.24 and 1.29 for propranolol, which were within the range of published values (within 1.0–1.8-fold of values from eight clinical studies). For ibrutinib, the predicted geometric mean fed/fasted AUC and C max ratios were 2.0 and 1.84, respectively, which was within 1.1-fold of the reported fed/fasted AUC ratio but underestimated the reported C max ratio by up to 1.9-fold. For both drugs, the interindividual variability in fed/fasted AUC and C max ratios was underpredicted. This suggests that the postprandial change in splanchnic blood flow is a major mechanism of the food effect for propranolol and ibrutinib but is insufficient to fully explain the observations. The proposed model is anticipated to improve the prediction of food effect for high-extraction drugs, but should be considered with other mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Welling PG. Effects of food on drug absorption. Annu Rev Nutr. 1996;16:383–415.

    Article  CAS  PubMed  Google Scholar 

  2. FDA. Guidance for industry: food-effect bioavailability and fed bioequivalence studies. Rockville, MD: Food and Drug Administration; 2002.

    Google Scholar 

  3. Andreas CJ, Pepin X, Markopoulos C, Vertzoni M, Reppas C, Dressman JB. Mechanistic investigation of the negative food effect of modified release zolpidem. Eur J Pharm Sci. 2017;102:284–98.

    Article  CAS  PubMed  Google Scholar 

  4. Cristofoletti R, Patel N, Dressman JB. Differences in food effects for 2 weak bases with similar BCS drug-related properties: what is happening in the intestinal lumen? J Pharm Sci. 2016;105(9):2712–22.

    Article  CAS  PubMed  Google Scholar 

  5. Heimbach T, Xia B, Lin TH, He H. Case studies for practical food effect assessments across BCS/BDDCS class compounds using in silico, in vitro, and preclinical in vivo data. AAPS J. 2013;15(1):143–58.

    Article  CAS  PubMed  Google Scholar 

  6. Patel N, Polak S, Jamei M, Rostami-Hodjegan A, Turner DB. Quantitative prediction of formulation-specific food effects and their population variability from in vitro data with the physiologically-based ADAM model: a case study using the BCS/BDDCS class II drug nifedipine. Eur J Pharm Sci. 2014;57:240–9.

    Article  CAS  PubMed  Google Scholar 

  7. Shono Y, Jantratid E, Janssen N, Kesisoglou F, Mao Y, Vertzoni M, et al. Prediction of food effects on the absorption of celecoxib based on biorelevant dissolution testing coupled with physiologically based pharmacokinetic modeling. Eur J Pharm Biopharm. 2009;73(1):107–14.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang H, Xia B, Sheng J, Heimbach T, Lin TH, He H, et al. Application of physiologically based absorption modeling to formulation development of a low solubility, low permeability weak base: mechanistic investigation of food effect. AAPS PharmSciTech. 2014;15(2):400–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. ICRP. Human alimentary tract model for radiological protection. ICRP Publication 100. Ann ICRP. 2006;36(1–2).

  10. Melander A, Danielson K, Schersten B, Wahlin E. Enhancement of the bioavailability of propranolol and metoprolol by food. Clin Pharmacol Ther. 1977;22(1):108–12.

    Article  CAS  PubMed  Google Scholar 

  11. McLean AJ, McNamara PJ, duSouich P, Gibaldi M, Lalka D. Food, splanchnic blood flow, and bioavailability of drugs subject to first-pass metabolism. Clin Pharmacol Ther. 1978;24(1):5–10.

    Article  CAS  PubMed  Google Scholar 

  12. Moneta GL, Taylor DC, Helton WS, Mulholland MW, Strandness DE Jr. Duplex ultrasound measurement of postprandial intestinal blood flow: effect of meal composition. Gastroenterology. 1988;95(5):1294–301.

    Article  CAS  PubMed  Google Scholar 

  13. Qamar MI, Read AE. Effects of ingestion of carbohydrate, fat, protein, and water on the mesenteric blood flow in man. Scand J Gastroenterol. 1988;23(1):26–30.

    Article  CAS  PubMed  Google Scholar 

  14. Sidery MB, Macdonald IA. The effect of meal size on the cardiovascular responses to food ingestion. Br J Nutr. 1994;71(6):835–48.

    Article  CAS  PubMed  Google Scholar 

  15. Sieber C, Beglinger C, Jager K, Stalder GA. Intestinal phase of superior mesenteric artery blood flow in man. Gut. 1992;33(4):497–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parker DR, Carlisle K, Cowan FJ, Corrall RJ, Read AE. Postprandial mesenteric blood flow in humans: relationship to endogenous gastrointestinal hormone secretion and energy content of food. Eur J Gastroenterol Hepatol. 1995;7(5):435–40.

    CAS  PubMed  Google Scholar 

  17. Jamei M. Recent advances in development and application of physiologically-based pharmacokinetic (PBPK) models: a transition from academic curiosity to regulatory acceptance. Curr Pharmacol Rep. 2016;2:161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jager K, Bollinger A, Valli C, Ammann R. Measurement of mesenteric blood flow by duplex scanning. J Vasc Surg. 1986;3(3):462–9.

    Article  CAS  PubMed  Google Scholar 

  19. Cooper AM, Braatvedt GD, Qamar MI, Brown H, Thomas DM, Halliwell M, et al. Fasting and post-prandial splanchnic blood flow is reduced by a somatostatin analogue (octreotide) in man. Clin Sci (Lond). 1991;81(2):169–75.

    Article  CAS  Google Scholar 

  20. Madsen JL, Sondergaard SB, Moller S. Meal-induced changes in splanchnic blood flow and oxygen uptake in middle-aged healthy humans. Scand J Gastroenterol. 2006;41(1):87–92.

    Article  PubMed  Google Scholar 

  21. Svensson CK, Edwards DJ, Mauriello PM, Barde SH, Foster AC, Lanc RA, et al. Effect of food on hepatic blood flow: implications in the “food effect” phenomenon. Clin Pharmacol Ther. 1983;34(3):316–23.

    Article  CAS  PubMed  Google Scholar 

  22. Matheson PJ, Wilson MA, Garrison RN. Regulation of intestinal blood flow. J Surg Res. 2000;93(1):182–96.

    Article  CAS  PubMed  Google Scholar 

  23. Howgate EM, Rowland Yeo K, Proctor NJ, Tucker GT, Rostami-Hodjegan A. Prediction of in vivo drug clearance from in vitro data. I: impact of inter-individual variability. Xenobiotica. 2006;36(6):473–97.

    Article  CAS  PubMed  Google Scholar 

  24. Yang J, Jamei M, Yeo KR, Tucker GT, Rostami-Hodjegan A. Prediction of intestinal first-pass drug metabolism. Curr Drug Metab. 2007;8(7):676–84.

    Article  CAS  PubMed  Google Scholar 

  25. Jamei M, Turner D, Yang J, Neuhoff S, Polak S, Rostami-Hodjegan A, et al. Population-based mechanistic prediction of oral drug absorption. AAPS J. 2009;11(2):225–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Avdeef A, Box KJ, Comer JE, Hibbert C, Tam KY. pH-metric logP 10. Determination of liposomal membrane-water partition coefficients of ionizable drugs. Pharm Res. 1998;15(2):209–15.

    Article  CAS  PubMed  Google Scholar 

  27. Avdeef A. pH-metric log P. II: refinement of partition coefficients and ionization constants of multiprotic substances. J Pharm Sci. 1993;82(2):183–90.

    Article  CAS  PubMed  Google Scholar 

  28. Rodgers T, Leahy D, Rowland M. Tissue distribution of basic drugs: accounting for enantiomeric, compound and regional differences amongst beta-blocking drugs in rat. J Pharm Sci. 2005;94(6):1237–48.

    Article  CAS  PubMed  Google Scholar 

  29. Routledge PA, Shand DG. Clinical pharmacokinetics of propranolol. Clin Pharmacokinet. 1979;4(2):73–90.

    Article  CAS  PubMed  Google Scholar 

  30. Taylor EA, Turner P. The distribution of propranolol, pindolol and atenolol between human erythrocytes and plasma. Br J Clin Pharmacol. 1981;12(4):543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bendayan R, Pieper JA, Stewart RB, Caranasos GJ. Influence of age on serum protein binding of propranolol. Eur J Clin Pharmacol. 1984;26(2):251–4.

    Article  CAS  PubMed  Google Scholar 

  32. Benedek IH, Fiske WD 3rd, Griffen WO, Bell RM, Blouin RA, McNamara PJ. Serum alpha 1-acid glycoprotein and the binding of drugs in obesity. Br J Clin Pharmacol. 1983;16(6):751–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cheymol G, Poirier JM, Barre J, Pradalier A, Dry J. Comparative pharmacokinetics of intravenous propranolol in obese and normal volunteers. J Clin Pharmacol. 1987;27(11):874–9.

    Article  CAS  PubMed  Google Scholar 

  34. Colangelo P, Chandler M, Blouin R, McNamara P. Stereoselective binding of propranolol in the elderly. Br J Clin Pharmacol. 1989;27(4):519–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Colangelo PM, Blouin RA, Steinmetz JE, McNamara PJ, DeMaria AN, Wedlund PJ. Age and propranolol stereoselective disposition in humans. Clin Pharmacol Ther. 1992;51(5):489–94.

    Article  CAS  PubMed  Google Scholar 

  36. Winiwarter S, Bonham NM, Ax F, Hallberg A, Lennernas H, Karlen A. Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach. J Med Chem. 1998;41(25):4939–49.

    Article  CAS  PubMed  Google Scholar 

  37. Cid E, Mella F, Lucchini L, Carcamo M, Monasterio J. Plasma concentrations and bioavailability of propranolol by oral, rectal, and intravenous administration in man. Biopharm Drug Dispos. 1986;7(6):559–66.

    Article  CAS  PubMed  Google Scholar 

  38. Cheymol G, Poirier JM, Carrupt PA, Testa B, Weissenburger J, Levron JC, et al. Pharmacokinetics of beta-adrenoceptor blockers in obese and normal volunteers. Br J Clin Pharmacol. 1997;43(6):563–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Regardh CG, Johnsson G, Jordo L, Lungborg P, Persson BA, Ronn O. Plasma concentrations and beta-blocking effects in normal volunteers after intravenous doses of metoprolol and propranolol. J Cardiovasc Pharmacol. 1980;2(6):715–23.

    Article  CAS  PubMed  Google Scholar 

  40. Sowinski KM, Burlew BS. Impact of CYP2D6 poor metabolizer phenotype on propranolol pharmacokinetics and response. Pharmacotherapy. 1997;17(6):1305–10.

    CAS  PubMed  Google Scholar 

  41. Bauer LA, Murray K, Horn JR, Opheim K, Olsen J. Influence of nifedipine therapy on indocyanine green and oral propranolol pharmacokinetics. Eur J Clin Pharmacol. 1989;37(3):257–60.

    Article  CAS  PubMed  Google Scholar 

  42. Karol MD, Locke CS, Cavanaugh JH. Lack of interaction between lansoprazole and propranolol, a pharmacokinetic and safety assessment. J Clin Pharmacol. 2000;40(3):301–8.

    Article  CAS  PubMed  Google Scholar 

  43. Walle T, Walle UK, Wilson MJ, Fagan TC, Gaffney TE. Stereoselective ring oxidation of propranolol in man. Br J Clin Pharmacol. 1984;18(5):741–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McGinnity DF, Parker AJ, Soars M, Riley RJ. Automated definition of the enzymology of drug oxidation by the major human drug metabolizing cytochrome P450s. Drug Metab Dispos. 2000;28(11):1327–34.

    CAS  PubMed  Google Scholar 

  45. Rowland Yeo K, Rostami-Hodjegan A, Tucker GT. Abundance of cytochromes P450 in human liver: a meta-analysis. Br J Clin Pharmacol. 2004;57:687–8.

    Google Scholar 

  46. Crewe HK, Barter ZE, Yeo KR, Rostami-Hodjegan A. Are there differences in the catalytic activity per unit enzyme of recombinantly expressed and human liver microsomal cytochrome P450 2C9? A systematic investigation into inter-system extrapolation factors. Biopharm Drug Dispos. 2011;32(6):303–18.

    Article  CAS  PubMed  Google Scholar 

  47. Proctor NJ, Tucker GT, Rostami-Hodjegan A. Predicting drug clearance from recombinantly expressed CYPs: intersystem extrapolation factors. Xenobiotica. 2004;34(2):151–78.

    Article  CAS  PubMed  Google Scholar 

  48. Cubitt HE, Yeo KR, Howgate EM, Rostami-Hodjegan A, Barter ZE. Sources of interindividual variability in IVIVE of clearance: an investigation into the prediction of benzodiazepine clearance using a mechanistic population-based pharmacokinetic model. Xenobiotica. 2011;41(8):623–38.

    Article  CAS  PubMed  Google Scholar 

  49. Liedholm H, Wahlin-Boll E, Melander A. Mechanisms and variations in the food effect on propranolol bioavailability. Eur J Clin Pharmacol. 1990;38(5):469–75.

    Article  CAS  PubMed  Google Scholar 

  50. Olanoff LS, Walle T, Cowart TD, Walle UK, Oexmann MJ, Conradi EC. Food effects on propranolol systemic and oral clearance: support for a blood flow hypothesis. Clin Pharmacol Ther. 1986;40(4):408–14.

    Article  CAS  PubMed  Google Scholar 

  51. Parsons RL, Kaye CM, Raymond K, Trounce JR, Turner P. Absorption of propranolol and practolol in coeliac disease. Gut. 1976;17(2):139–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Walle T, Fagan TC, Walle UK, Oexmann MJ, Conradi EC, Gaffney TE. Food-induced increase in propranolol bioavailability—relationship to protein and effects on metabolites. Clin Pharmacol Ther. 1981;30(6):790–5.

    Article  CAS  PubMed  Google Scholar 

  53. Zhou HH, Anthony LB, Roden DM, Wood AJ. Quinidine reduces clearance of (+)-propranolol more than (−)-propranolol through marked reduction in 4-hydroxylation. Clin Pharmacol Ther. 1990;47(6):686–93.

    Article  CAS  PubMed  Google Scholar 

  54. de Zwart L, Snoeys J, De Jong J, Sukbuntherng J, Mannaert E, Monshouwer M. Ibrutinib dosing strategies based on interaction potential of CYP3A4 perpetrators using physiologically based pharmacokinetic modeling. Clin Pharmacol Ther. 2016;100(5):548–57.

    Article  PubMed  Google Scholar 

  55. Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94(6):1259–76.

    Article  CAS  PubMed  Google Scholar 

  56. Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238.

    Article  CAS  PubMed  Google Scholar 

  57. de Jong J, Sukbuntherng J, Skee D, Murphy J, O’Brien S, Byrd JC, et al. The effect of food on the pharmacokinetics of oral ibrutinib in healthy participants and patients with chronic lymphocytic leukemia. Cancer Chemother Pharmacol. 2015;75(5):907–16.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liedholm H, Melander A. Concomitant food intake can increase the bioavailability of propranolol by transient inhibition of its presystemic primary conjugation. Clin Pharmacol Ther. 1986;40(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  59. McLean AJ, Isbister C, Bobik A, Dudley FJ. Reduction of first-pass hepatic clearance of propranolol by food. Clin Pharmacol Ther. 1981;30(1):31–4.

    Article  CAS  PubMed  Google Scholar 

  60. Sidery MB, Macdonald IA, Cowley AJ, Fullwood LJ. Cardiovascular responses to high-fat and high-carbohydrate meals in young subjects. Am J Phys. 1991;261(5 Pt 2):H1430–6.

    CAS  Google Scholar 

  61. Waaler BA, Eriksen M. Post-prandial cardiovascular responses in man after ingestion of carbohydrate, protein or fat. Acta Physiol Scand. 1992;146(3):321–7.

    Article  CAS  PubMed  Google Scholar 

  62. Burkart DJ, Johnson CD, Reading CC, Ehman RL. MR measurements of mesenteric venous flow: prospective evaluation in healthy volunteers and patients with suspected chronic mesenteric ischemia. Radiology. 1995;194(3):801–6.

    Article  CAS  PubMed  Google Scholar 

  63. Pugliese D, Ohnishi K, Tsunoda T, Sabba C, Albano O. Portal hemodynamics after meal in normal subjects and in patients with chronic liver disease studied by echo-Doppler flowmeter. Am J Gastroenterol. 1987;82(10):1052–6.

    CAS  PubMed  Google Scholar 

  64. Dimitriadis G, Mitrou P, Lambadiari V, Boutati E, Maratou E, Panagiotakos DB, et al. Insulin action in adipose tissue and muscle in hypothyroidism. J Clin Endocrinol Metab. 2006;91(12):4930–7.

    Article  CAS  PubMed  Google Scholar 

  65. Frayn KN, Karpe F, Fielding BA, Macdonald IA, Coppack SW. Integrative physiology of human adipose tissue. Int J Obes Relat Metab Disord. 2003;27(8):875–88.

    Article  CAS  PubMed  Google Scholar 

  66. Dauzat M, Lafortune M, Patriquin H, Pomier-Layrargues G. Meal induced changes in hepatic and splanchnic circulation: a noninvasive Doppler study in normal humans. Eur J Appl Physiol Occup Physiol. 1994;68(5):373–80.

    Article  CAS  PubMed  Google Scholar 

  67. Jeays AD, Lawford PV, Gillott R, Spencer PA, Bardhan KD, Hose DR. A framework for the modeling of gut blood flow regulation and postprandial hyperaemia. World J Gastroenterol. 2007;13(9):1393–8.

    Article  PubMed  PubMed Central  Google Scholar 

  68. FDA. Clinical pharmacology and biopharmaceutics review: Ibrutinib. 2014 [cited 2016 22 April]. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/205552Orig2s000ClinPharmR.pdf.

  69. Coffman BL, King CD, Rios GR, Tephly TR. The glucuronidation of opioids, other xenobiotics, and androgens by human UGT2B7Y(268) and UGT2B7H(268). Drug Metab Dispos. 1998;26(1):73–7.

    CAS  PubMed  Google Scholar 

  70. Hanioka N, Hayashi K, Shimizudani T, Nagaoka K, Koeda A, Naito S, et al. Stereoselective glucuronidation of propranolol in human and cynomolgus monkey liver microsomes: role of human hepatic UDP-glucuronosyltransferase isoforms, UGT1A9, UGT2B4 and UGT2B7. Pharmacology. 2008;82(4):293–303.

    Article  CAS  PubMed  Google Scholar 

  71. Itaaho K, Laakkonen L, Finel M. How many and which amino acids are responsible for the large activity differences between the highly homologous UDP-glucuronosyltransferases (UGT) 1A9 and UGT1A10? Drug Metab Dispos. 2010;38(4):687–96.

    Article  CAS  PubMed  Google Scholar 

  72. Sten T, Qvisen S, Uutela P, Luukkanen L, Kostiainen R, Finel M. Prominent but reverse stereoselectivity in propranolol glucuronidation by human UDP-glucuronosyltransferases 1A9 and 1A10. Drug Metab Dispos. 2006;34(9):1488–94.

    Article  CAS  PubMed  Google Scholar 

  73. Akabane T, Tabata K, Kadono K, Sakuda S, Terashita S, Teramura T. A comparison of pharmacokinetics between humans and monkeys. Drug Metab Dispos. 2010;38(2):308–16.

    Article  CAS  PubMed  Google Scholar 

  74. Zoller WG, Wagner DR, Zentner J. Effect of propranolol on portal vein hemodynamics: assessment by duplex sonography and indocyanine green clearance in healthy volunteers. Clin Investig. 1993;71(8):654–8.

    Article  CAS  PubMed  Google Scholar 

  75. Daneshmend TK, Jackson L, Roberts CJ. Physiological and pharmacological variability in estimated hepatic blood flow in man. Br J Clin Pharmacol. 1981;11(5):491–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sidery MB, Macdonald IA, Blackshaw PE. Superior mesenteric artery blood flow and gastric emptying in humans and the differential effects of high fat and high carbohydrate meals. Gut. 1994;35(2):186–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Eleanor Savill, Jessica Waite and Rosalie Bower for their assistance in the preparation of this manuscript. The Simcyp Simulator is freely available, following completion of the relevant workshop, to approved members of academic institutions and other non-for-profit organisations for research and teaching purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel H. Rose.

Ethics declarations

Conflict of Interest

Rachel Rose, David Turner, Sibylle Neuhoff and Masoud Jamei are employees of Simcyp (a Certara Company). Simcyp’s research is funded by a consortium of pharmaceutical companies.

ELECTRONIC SUPPLEMENTARY MATERIAL

ESM 1

(DOCX 32 kb)

ESM 2

(DOCX 405 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rose, R.H., Turner, D.B., Neuhoff, S. et al. Incorporation of the Time-Varying Postprandial Increase in Splanchnic Blood Flow into a PBPK Model to Predict the Effect of Food on the Pharmacokinetics of Orally Administered High-Extraction Drugs. AAPS J 19, 1205–1217 (2017). https://doi.org/10.1208/s12248-017-0099-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0099-z

KEY WORDS

Navigation