Skip to main content
Log in

The Two Main Goals of Bioequivalence Studies

  • Commentary
  • Theme: Pharmacokinetics, Biopharmaceutics and Bioequivalence: History and Perspectives
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The principal goal of bioequivalence (BE) investigations has crucial importance and has been the subject of extensive discussions. BE studies are frequently considered to serve as procedures for sensitive discrimination. The BE investigation should be able to provide methods and conditions sensitively identifying relevant differences between drug products if such differences in fact exist. Alternatively, BE studies can be deemed as surrogates of clinical investigations assessing therapeutic equivalence. Bioequivalent drug products will be provided to patients for their benefits. Both points of view are valid since they represent two aspects of product performance. It has been argued that both should be equally sustained and applied. In practice, however, they collide when regulatory conditions and statements are developed. For instance, some regulators prefer to conduct BE studies following single drug administrations since these conditions are considered to provide the highest sensitivity of discrimination between pharmacokinetic profiles and thus, a product’s in-vivo performance. Others suggest that, at least for modified-release products, BE investigations should be performed in the steady state since it represents clinical conditions. Preference for one point of view or the other pervades other regulatory statements including suggestions for subjects to be selected in studies and pharmacokinetic measures to be evaluated. An overview is provided on the disturbing inconsistency of statements within and between regulations. It is argued that harmonization would be highly desirable, and relevant recommendations are offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Blume HH, Midha KK. Bio-International 92: Conference on bioavailability, bioequivalence, and pharmacokinetic studies. J Pharm Sci. 1993;82:1186–9.

    Article  CAS  PubMed  Google Scholar 

  2. Blume H, McGilveray I, Midha K. Bio-International 94: Conference on bioavailability, bioequivalence and pharmacokinetic studies. Eur J Pharm Sci. 1995;3:113–24.

    Article  CAS  Google Scholar 

  3. Levy G. The clay feet of bioequivalence. J Pharm Pharmacol. 1995;47:975–7.

    Article  CAS  PubMed  Google Scholar 

  4. Tucker GT. Is Cmax/AUC useful for bioequivalence testing? J Pharm Sci. 1997;86:1504–5.

    Article  PubMed  Google Scholar 

  5. Endrenyi L, Tothfalusi L. Secondary metrics for the assessment of bioequivalence. J Pharm Sci. 1997;86:401–2.

    Article  CAS  PubMed  Google Scholar 

  6. Chen M-L, Shah VP, Crommelin DJ, Shargel L, Bashaw D, Bhatti B, et al. Harmonization of regulatory approaches for evaluating therapeutic equivalence and interchangeability of multisource drug products: Workshop summary report. Eur J Pharm Sci. 2011;44:506–13.

    Article  CAS  PubMed  Google Scholar 

  7. FDA. Draft guidance for industry: Bioequivalence studies with pharmacokinetic endpoints for drugs submitted under an ANDA. Silver Spring: Center for Drug Evaluation and Research (CDER); 2013. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm377465.pdf.

    Google Scholar 

  8. FDA. Draft guidance for industry: Bioavailability and bioequivalence studies submitted in NDAs and INDs – general considerations. Silver Spring: Center for Drug Evaluation and Research (CDER); 2014. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm389370.pdf.

    Google Scholar 

  9. EMA. Guideline on the investigation of bioequivalence. London: European Medicines Agency; 2010.

    Google Scholar 

  10. Health Canada. Guidance Document: Conduct and analysis of comparative bioavailability studies. Ottawa: Health Canada; 2012. http://hc-sc.gc.ca/dhp-mps/alt_formats/pdf/prodpharma/applicdemande/guide-ld/bio/gd_cbs_ebc_ld-eng.pdf.

    Google Scholar 

  11. Endrenyi L, Tothfalusi L. Regulatory conditions for the determination of bioequivalence of highly variable drugs. J Pharm Pharm Sci. 2009;12(1):138–49.

    Article  CAS  PubMed  Google Scholar 

  12. Karalis V, Symillides M, Macheras P. Bioequivalenc of highly variable drugs: a comparison of the newly proposed regulatory approaches by FDA and EMA. Pharm Res. 2012;29:1066–77.

    Article  CAS  PubMed  Google Scholar 

  13. Sugihara M, Tageuchi S, Sugita M, Higaki K, Kataoka M, Yamashita S. Analysis of intra- and intersubject variability in oral drug absorption in human bioequivalence studies of 113 generic products. Mol Pharm. 2015;12:4405–12.

    Article  CAS  PubMed  Google Scholar 

  14. Blume HH, Scheidel B, Siewert M. Application of single-dose vs. multiple-dose studies. In: Midha KK, Blume HH, editors. Bio-International: bioavailability, bioequivalence and pharmacokinetics. Stuttgart: Medpharm Scientific Publishers; 1992. p. 37–52.

    Google Scholar 

  15. Elze M, Potthast H, Blume HH. Metrics of absorption: data base analysis. In: Blume HH, Midha KK, editors. Bio-International 2: bioavailability, bioequivalence and pharmacokinetic studies. Stuttgart: Medpharm Scientific Publishers; 1995. p. 61–71.

    Google Scholar 

  16. Zha J, Endrenyi L. Variation of the peak concentration following single and repeated drug administrations in investigations of bioavailability and bioequivalence. J Biopharm Stat. 1997;7:191–204.

    Article  CAS  PubMed  Google Scholar 

  17. Jackson AJ. Prediction of steady-state bioequivalence relationships using single dose data I-linear kinetics. Biopharm Drug Dispos. 1987;8:483–96.

    Article  CAS  PubMed  Google Scholar 

  18. El-Tahtawy AA, Jackson AJ, Ludden TM. Comparison of single and multiple dose pharmacokinetic using clinical bioequivalence data and Monte Carlo simulations. Pharm Res. 1994;11:1330–6.

    Article  CAS  PubMed  Google Scholar 

  19. El-Tahtawy AA, Tozer TN, Harrison F, Lesko L, Williams R. Evaluation of bioequivalence of highly variable drugs using clinical trial simulations. II. Comparison of single and multiple dose trials using AUC and Cmax. Pharm Res. 1998;15:98–104.

    Article  CAS  PubMed  Google Scholar 

  20. Anschütz M, Wonnemann M, Schug B, Toal C, Donath F, Pontius A, et al. Differences in bioavailability between 60 mg of nifedipine osmotic push–pull systems after fasting and fed administrations. Int J Clin Pharmacol Ther. 2010;48:158–70.

    Article  PubMed  Google Scholar 

  21. Dickstein J, Endrenyi L, Jamali F, Remmerie B. Appropriateness of traditional bioequivalence metrics to infer therapeutic equivalence for follow-on long acting injectables with complex pharmacokinetic profiles. J Pharm Pharm Sci. 2015;18(3):128s–9.

    Google Scholar 

  22. Garcia-Arieta A, Morales-Alcelay S, Herranz M, de la Torre JM, Blazquez A, Suarez L, et al. Investigation on the need of multiple dose bioequivalence studies for prolonged-release generic products. Int J Pharm. 2012;423:321–5.

    Article  CAS  PubMed  Google Scholar 

  23. Paixao P, Gouveia LF, Morais JAG. An alternative single dose parameter to avoid the need for steady-state studies on oral extended release drug products. Eur J Pharm Biopharm. 2012;80:410–7.

    Article  CAS  PubMed  Google Scholar 

  24. Endrenyi L, Tothfalusi L. Do regulatory bioequivalence requirements adequately reflect the therapeutic equivalence of modified-release drug products? J Pharm Pharm Sci. 2010;13:107–13.

  25. FDA. Guidance on zolpidem. Silver Spring: Center for Drug Evaluation and Research (CDER); 2011. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm175029.pdf.

    Google Scholar 

  26. FDA. Draft guidance on methylphenidate. Silver Spring: Center for Drug Evaluation and Research (CDER); 2012, revised November 2014. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm320007.pdf.

  27. Stier EM, Davit BM, Chandaroy P, et al. Use of partial area curve metrics to assess the bioequivalence of methylphenidate multiphasic modified release formulations. AAPS J. 2012;14(4):925–6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lionberger RA, Raw AS, Kim SH, Zhang X, Yu LX. Use of partial AUC to demonstrate bioequivalence of zolpidem tartrate extended release formulations. Pharm Res. 2012;29:1110–20.

    Article  CAS  PubMed  Google Scholar 

  29. Fourie Zirkelbach J, Jackson AJ, Wang Y, Schuirmann DJ. Use of partial AUC (PAUC) to evffaluate bioequivalence—a case study with complex absorption: methylphenidate. Pharm Res. 2013;30(1):191–202.

    Article  CAS  PubMed  Google Scholar 

  30. EMA. Guideline on the pharmacokinetic and clinical evaluation of modified release dosage forms. London: European Medicines Agency; 2014.

    Google Scholar 

  31. FDA. Methylphenidate extended release tablets (generic Concerta) made by Mallinckrodt and Kudco. 2014. http://www.fda.gov/Drugs/DrugSafety/ucm422568.htm.

  32. FDA. Questions and answers regarding methylphenidate extended release tablets (generic Concerta) made by Mallinckrodt and Kudco. 2014. http://www.fda.gov/Drugs/DrugSafety/ucm422569.htm.

  33. Endrenyi L, Tothfalusi L. Metrics for the evaluation of bioequivalence of modified-release formulations. AAPS J. 2012;14(4):813–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Endrenyi L, Fritsch S, Wei Y. Cmax/AUC is a clearer measure than Cmax for absorption rates in investigations of bioequivalence. Int J Clin Pharmacol Ther Toxicol. 1991;29:394–9.

    CAS  PubMed  Google Scholar 

  35. Tothfalusi L, Endrenyi L. Without extrapolation, Cmax/AUC is an effective metric in investigations of bioequivalence. Pharm Res. 1995;12:937–42.

    Article  CAS  PubMed  Google Scholar 

  36. Endrenyi L, Yan W. Variation of Cmax and Cmax/AUC in investigations of bioequivalence. Int J Clin Pharmacol Ther Toxicol. 1993;31:184–9.

    CAS  PubMed  Google Scholar 

  37. Lacey LF, Keene ON, Duquesnoy C, Bye A. Evaluation of different indirect measures of rate of drug absorption in comparative pharmacokinetic studies. J Pharm Sci. 1994;83:212–5.

    Article  CAS  PubMed  Google Scholar 

  38. Rostami-Hodjegan A, Tucker GT. Is Cmax/AUC useful for bioequivalence testing? J Pharm Sci. 1997;86:1504–5.

    Article  CAS  PubMed  Google Scholar 

  39. Tozer TN, Hauck WW. Cmax/AUC, a commentary. Pharm Res. 1997;14:967–8.

    Article  CAS  PubMed  Google Scholar 

  40. Chen ML, Lesko L, Williams RL. Measures of exposure versus measures of rate and extent of absorption. Clin Pharmacokinet. 2001;40:565–72.

    Article  CAS  PubMed  Google Scholar 

  41. Tozer TN, Bois FY, Hauck WW, Chen ML, Williams RL. Absorption rate vs exposure: which is more useful for bioequivalence testing? Pharm Res. 1996;13:453–6.

    Article  CAS  PubMed  Google Scholar 

  42. Endrenyi L. Al-Shaikh. Sensitive and specific determination of the equivalence of absorption rates. Pharm Res. 1995;12(12):1856–64.

    Article  CAS  PubMed  Google Scholar 

  43. Macheras P, Symillides M, Reppas C. An improved intercept method for the assessment of absorption rate in bioequivalence studies. Pharm Res. 1996;13(11):1755–8.

    Article  CAS  PubMed  Google Scholar 

  44. Jackson AJ, Robbie G, Marroum P. Metabolites and bioequivalence: past and present. Clin Pharmacokinet. 2004;43(10):655–72.

    Article  CAS  PubMed  Google Scholar 

  45. Chen ML, Jackson AJ. The role of metabolites in bioequivalency assessment: II. drugs with linear pharmacokinetics and first-pass effect. Pharm Res. 1995;12:700–8.

    Article  CAS  PubMed  Google Scholar 

  46. Midha KK, Rawson MJ, Hubbard JW. The role of metabolites in bioequivalence. Pharm Res. 2004;21(8):1331–44.

    Article  CAS  PubMed  Google Scholar 

  47. Srinivas NR. Considerations for metabolite pharmacokinetic data in bioavailability/bioequivalence assessments. Overview of the recent trends. Arzneimittelforschung. 2009;59(4):155–65.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the valuable and helpful comments and suggestions of Dr. Marilyn N. Martinez (U.S. Food and Drug Administration) on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laszlo Endrenyi.

Additional information

Guest Editors: Lawrence Yu, Sau L. Lee, Guenther Hochhaus, Lana Lyapustina, Martin Oliver, and Craig Davies-Cutting

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endrenyi, L., Blume, H.H. & Tothfalusi, L. The Two Main Goals of Bioequivalence Studies. AAPS J 19, 885–890 (2017). https://doi.org/10.1208/s12248-017-0048-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0048-x

KEY WORDS

Navigation