Skip to main content
Log in

Preparation and characterization of Eudragit Retard nanosuspensions for the ocular delivery of cloricromene

AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this study was to improve the stability of cloricromene (AD6) in ophthalmic formulations and its drug availability at the ocular level. To this end, AD6-loaded polymeric nanoparticle suspensions were made using inert polymer resins (Eudragit RS100 and RL100). We modified the quasi-emulsion solvent diffusion technique by varying some formulation parameters (the drug-to-polymer ratio, the total drug and polymer amount, and the stirring speed). The chemical stability of AD6 in the nanosuspensions was assessed by preparing some formulations using (unbuffered) isotonic saline or a pH 7 phosphate buffer solution as the dispersing medium. The formulations were stored at 4°C, and the rate of degradation of AD6 was followed by high performance liquid chromatography (HPLC). The obtained nanosuspensions showed mean sizes and a positive surface charge (ζ-potential) that make them suitable for an ophthalmic application; these properties were maintained upon storage at 4°C for several months. In vitro dissolution tests confirmed a modified release of the drug from the polymer matrixes. Nanosuspensions prepared with saline solution and no or lower amounts of surfactant (Tween 80) showed an enhanced stability of the ester drug for several months, with respect to an AD6 aqueous solution. Based on the tecnological results, AD6-loaded Eudragit Retard nanoparticle suspensions appear to, offer promise as a means to improving the shelf life and bioavailability of this drug after ophthalmic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Li VHK, Wood RW, Kreuter J, Harmia T, Robinson JR. Ocular drug delivery of progesterone using nanoparticles. J Microencapsul. 1986;3:213–218.

    Article  CAS  PubMed  Google Scholar 

  2. Marchal-Heussler L, Sirbat D, Hoffman M, Maincent P. Poly(ε-caprolactone) nanocapsules in carteolol ophthalmic delivery. Pharm Res. 1993;10:386–390.

    Article  CAS  PubMed  Google Scholar 

  3. Zimmer AK, Serbe H, Kreuter J. Evaluation of pilocarpine-loaded albumin particles as drug delivery systems for controlled delivery in the eye, I: in vitro and in vivo characterization. J Control Release. 1994;32:57–70.

    Article  CAS  Google Scholar 

  4. Calvo P, Vila-Jato JL, Alonso MJ. Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int J Pharm. 1997;153:41–50.

    Article  CAS  Google Scholar 

  5. Bucolo C, Maltese A, Puglisi G, Pignatello R. Enhanced ocular anti-inflammatory activity of ibuprofen carried by a Eudragit RS100® nanoparticle suspension. Ophthalmic Res. 2002; 34:319–323.

    Article  CAS  PubMed  Google Scholar 

  6. Pignatello R, Bucolo C, Spedalieri G, Maltese A, Puglisi G. Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials. 2002;23:3247–3255.

    Article  CAS  PubMed  Google Scholar 

  7. Pignatello R, Bucolo C, Ferrara P, Maltese A, Puleo A, Puglisi G. Eudragit RS100® nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci. 2002;16:53–61.

    Article  CAS  PubMed  Google Scholar 

  8. Kawashima Y, Iwamoto T, Niwa T, Takeuchi H, Hino T. Size control of ibuprofen microspheres with an acrylic polymer by changing the pH in an aqueous dispersion medium and its mechanism. Chem Pharm Bull (Tokyo). 1993;41:191–195.

    Article  CAS  Google Scholar 

  9. Perumal D, Dangor CM, Alcock RS, Hurbans N, Moopanar KR. Effect of formulation variables on in vitro drug release and micromeritic properties of modified release ibuprofen microspheres. J Microencapsul. 1999;16:475–487.

    Article  CAS  PubMed  Google Scholar 

  10. Pignatello R, Amico D, Chiechio S, Giunchedi P, Spadaro C, Puglisi G. Preparation and analgesic activity of Eudragit RS100 microparticles containing diflunisal. Drug Deliv. 2001; 8:35–45.

    Article  CAS  PubMed  Google Scholar 

  11. Squadrito F, Prosdocimi M, Altavilla D, Zingarelli B, Caputi A. Cloricromene. Cardiovasc Drug Rev. 1991;4:357–371.

    Article  Google Scholar 

  12. Galli C, Agradi E, Petroni A, Socini A. Effects of 8-monochloro-3-beta-diethylaminoethyl-4-methyl-7-ethoxy carboxyl methoxy coumarin (AD6) on aggregation, arachidonic acid metabolism and thromboxane B2 formation in human platelets. Pharmacol Res Commun. 1980;12:329–337.

    Article  CAS  PubMed  Google Scholar 

  13. Porcellati S, Costantini V, Prosdocimi M, et al. The coumarin derivative AD6 inhibits the release of arachidonic acid by interfering phospholipase A2 activity in human platelets stimulated with thrombin. Agents Actions. 1990;29:364–373.

    Article  CAS  PubMed  Google Scholar 

  14. Travagli RA, Zatta A, Banzatto N, et al. Molecular aspects of cloricromene (AD6) distribution in human platelets and its pharmacological effects. Thromb Res. 1989;54:327–338.

    Article  CAS  PubMed  Google Scholar 

  15. Bucolo C, Cuzzocrea S, Mazzon E, Caputi AP. Effects of cloricromene, a coumarin derivative, on endotoxin-induced uveitis in Lewis rats. Invest Ophthalmol Vis Sci. 2003;44:1178–1184.

    Article  PubMed  Google Scholar 

  16. Kawashima Y, Niwa T, Handa T, Takeuchi H, Iwamoto T, Itoh K. Preparation of controlled-release micro spheres of ibuprofen with acrylic polymers by a novel quasi-emulsion solvent diffusion method. J Pharm Sci. 1989;78:68–72.

    Article  CAS  PubMed  Google Scholar 

  17. Maltese A, Bucolo C. Simultaneous determination of cloricromene and its active metabolite in rabbit aqueous humor by high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;767:153–158.

    Article  CAS  PubMed  Google Scholar 

  18. Benita S. Prevention of topical and ocular oxidative stress by positively charged submicron emulsion. Biomed Pharmacother. 1999;53:193–206.

    Article  CAS  PubMed  Google Scholar 

  19. Klang S, Abdulrazik M, Benita S. Influence of emulsion droplet surface charge on indomethacin ocular tissue distribution. Pharm Dev Technol. 2000;5:521–532.

    Article  CAS  PubMed  Google Scholar 

  20. Bucolo C, Maltese A, Maugeri F, Busà B, Puglisi G, Pignatello R. Eudragit RL100 nanoparticle system for the ophthalmic delivery of cloricromene. J Pharm Pharmacol. 2004;56:841–846.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Pignatello.

Additional information

Published: March 24, 2006

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pignatello, R., Ricupero, N., Bucolo, C. et al. Preparation and characterization of Eudragit Retard nanosuspensions for the ocular delivery of cloricromene. AAPS PharmSciTech 7, 27 (2006). https://doi.org/10.1208/pt070127

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/pt070127

Keywords

Navigation