Skip to main content

Advertisement

Log in

Hydroxyzine from topical phospholipid liposomal formulations: Evaluation of peripheral antihistaminic activity and systemic absorption in a rabbit model

  • Published:
AAPS PharmSci Aims and scope Submit manuscript

Abstract

Hydroxyzine, an effective but sedating H1-antihistamine is given orally to treat allergic skin disorders. This study was performed to assess the peripheral H1-antihistaminic activity and extent of systemic absorption of hydroxyzine from liposomes applied to the skin. Using L-α-phosphatidylcholine (PC), small unilamellar vesicles (SUVs) and multilamellar vesicles (MLVs) containing hydroxyzine were prepared. Hydroxyzine in Glaxal Base (GB) was used as the control. Using a randomized, crossover design, each formulation, containing 10 mg of hydroxyzine, was applied to the shaved backs of 6 rabbits (3.08±0.05 kg). Histamine-induced wheal tests and blood sampling were performed at designated time intervals up to 24 hours. Compared with baseline, hydroxyzine from all formulations significantly suppressed histamine-induced wheal formation by 75% to 95% for up to 24 hours. Mean maximum suppression, 85% to 94%, occurred from 2 to 6 hours, with no differences among the formulations. The areas of plasma hydroxyzine concentration versus time area under the curve (AUCs) from PC-SUV and PC-MLV, 80.1±20.8 and 78.4±33.9 ng/mL/h, respectively, were lower than that from GB, 492±141 ng/mL/h (P<.05) over 24 hours. Plasma concentrations of cetirizine arising in-vivo as the active metabolite of hydroxyzine, from PC-SUV, PC-MLV, and GB, were similar with AUCs of 765±50, 1035±202, and 957±227 ng/mL/h, respectively (P<.05). Only 0.02% to 0.06% of the initial hydroxyzine dose remained on the skin after 24 hours. In this model, hydroxyzine from SUV and MLV had excellent topical H1-antihistaminic activity, and minimal systemic exposure occurred. Cetirizine formed in-vivo contributed to some of H1-antihistaminic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simons FER. H1-receptor antagonists: safety issues. Ann Allergy Asthma Immunol. 1999;83:481–488.

    Article  CAS  PubMed  Google Scholar 

  2. Reynolds JEF. Martindale the Extra Pharmacopoeia. 30th ed. London, UK: The Pharmaceutical Press, 1993.

    Google Scholar 

  3. El Maghraby GMM, Williams AC, Barry BW. Oestradiol skin delivery from ultradeformable liposomes: refinement of surfactant concentration. Int J Pharm. 2000;196:63–74.

    Article  PubMed  Google Scholar 

  4. Ganesan MG, Weiner ND, Flynn GL, Ho NFH. Influence of liposomal drug entrapment on percutaneous absorption. Int J Pharm. 1984;20:139–154.

    Article  CAS  Google Scholar 

  5. Niemiec SM, Latta JM, Ramachandran C, Weiner ND, Roessler BJ. Perifollicular transgenic expression of human Interleukin-1 receptor antagonist protein following topical application of novel liposome-plasmid DNA formulation in-vivo. J Pharm Sci. 1997;86:701–708.

    Article  CAS  PubMed  Google Scholar 

  6. Fleisher D, Niemiec SM, Oh CK, Hu Z, Ramachandran C, Weiner N. Topical delivery of growth hormone releasing peptide using liposomal systems: an in-vitro study using hairless mouse skin. Life Sci. 1995;57:1293–1297.

    Article  CAS  PubMed  Google Scholar 

  7. Egbaria K, Ramachandran C, Kittayanond D, Weiner N. Topical delivery of liposomally encapsulated interferon evaluated by invitro diffusion studies. Antimicrob Agents Chemother. 1990;34:107–110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Mezei M. Liposomes in the topical application of drugs: a review. In: Gregoriadis G, ed. Liposomes as Drug Carriers, Recent Trends and Progress, New York, NY: John Wiley and Sons; 1988.

    Google Scholar 

  9. Krowczynski L, Stozek T. Liposomes as drug-carriers in the transdermal therapy. Pharmazie. 1984;39:627–629.

    CAS  PubMed  Google Scholar 

  10. Patel HM. Liposomes as a controlled-release system. Biochem Soc Trans. 1985;13:513–516.

    CAS  PubMed  Google Scholar 

  11. Price CI, Horton JW, Baxter CR. Liposome delivery of aminoglycosides in burn wounds. Surg Gynecol Obstet. 1992;174:414–418.

    CAS  PubMed  Google Scholar 

  12. Price CI, Horton JW, Baxter CR. Topical liposomal delivery of antibiotics in soft tissue infection. J Surg Res. 1990;49:174–178.

    Article  CAS  PubMed  Google Scholar 

  13. Vyas SP, Singh R, Asati RK. Liposomally encapsulated diclofenac for sonophoresis induced systemic delivery. J Microencapsul. 1995;12:149–154.

    Article  CAS  PubMed  Google Scholar 

  14. El-Ridy MS, Khalil RM. Free versus liposome-encapsulated lignocaine hydrochloride topical applications. Pharmazie. 1999;54:682–684.

    CAS  PubMed  Google Scholar 

  15. Martin GP. Phospholipids as skin penetration enhancers. In: Walters KA, Hadgraft J, eds. Pharmaceutical Skin Penetration Enhancement. New York, NY: Marcel Dekker, 1993;57–60.

    Google Scholar 

  16. Yarosh DB. Topical application of liposomes. J Photochem Photobiol B. 1990;6:445–449.

    Article  CAS  PubMed  Google Scholar 

  17. Batzri S, Korn ED. Single bilayer liposomes prepared without sonication. Biochim Biophys Acta. 1973;298:1015–1019.

    Article  CAS  PubMed  Google Scholar 

  18. Nagarsenker MS, Londhe VY, Nadkarni GD. Preparation and evaluation of liposomal formulations of tropicamide for ocular delivery. Int J Pharm. 1999;190:63–71.

    Article  CAS  PubMed  Google Scholar 

  19. Elzainy AAW, Gu X, Simons FER, Simons KJ. Effect of different phospholipids on the stability of liposomal formulations containing hydroxyzine [abstract] AAPS Pharm Sci. 2002;4:4. Abstract R6110.

    Google Scholar 

  20. Olfert ED, Cross BM, Mcwilliam AA. Guide to the Care and Use of Experimental Animals. Ottawa ON, Canada: Canadian Council on Animal Care; 1993.

    Google Scholar 

  21. Simons FER, Simons KJ, Frith EM. The pharmacokinetics and antihistaminic effects of the H1-receptor antagonist hydroxyzine. J Allergy Clin Immunol. 1984;73:69–75.

    Article  CAS  PubMed  Google Scholar 

  22. Watson WTA, Simons KJ, Chen XY, Simons FER. Cetirizine: a pharmacokinetics and pharmacodynamic evaluation in children with seasonal allergic rhinitis. J Allergy Clin Immunol. 1989;84:457–464.

    Article  CAS  PubMed  Google Scholar 

  23. Simons FER, Silver NA, Gu X, Simons KJ. Skin concentrations of H1-receptor antagonists. J Allergy Clin Immunol. 2001;107:526–530.

    Article  CAS  PubMed  Google Scholar 

  24. Balen GPV, Caron G, Ermondi G, Pagliara A, Grandi T, Bouchard G, Fruttero R, Carrupt P-A, Testa B. Lipophilicity behaviour of the zwitterionic antihistamine cetirizine in phosphatidylcholine liposomes/water systems. Pharm Res. 2001;18:694–701.

    Article  Google Scholar 

  25. Patel HM, Moghimi SM. Liposomes and the skin permeability barrier. In: Gregoriadis G, Florence AT, Patel HM, eds. Liposomes in Drug Delivery. Chur, Switzerland: Harwood Academic Publishers; 1993:142–146.

    Google Scholar 

  26. Mezei M, Liposomes and the skin. In: Gregoriadis G, Florence AT, Patel HM, eds. Liposomes in Drug Delivery. Chur, Switzerland: Harwood Academic Publishers; 1993;125–135.

    Google Scholar 

  27. Simons FER, Silver NA, Gu X, Simons KJ. Clinical pharmacology of H1-antihistamines in the skin. J Allergy Clin Immunol. 2002;110:777–783.

    Article  CAS  PubMed  Google Scholar 

  28. Rihoux JP. Therapeutic index of H1-antihistamines: example of cetirizine. Ann. Allergy Asthma Immunol. 1999;83:489–491.

    Article  CAS  PubMed  Google Scholar 

  29. Foldvari M, Gesztes A, Mezei M. Dernal drug delivery by liposome encap sulation: clinical and electron microscopic studies. J Microencapsul. 1990;7:479–489.

    Article  CAS  PubMed  Google Scholar 

  30. Bashir SJ, Maibach HI. Cutaneous metabolism during in-vitro percutaneous absorption. In: Bronaugh RL, Kraeling MEK, Yourick J, Hood HL, eds, Topical Absorption of Dermatological Products. New York, NY: Marcel Dekker, 2002;77–81.

    Chapter  Google Scholar 

  31. Wohlarb W, Lasch J. Penetration kinetics of liposomal hydrocortisone in human skin. Dermatologica. 1987;174:18–22.

    Article  Google Scholar 

  32. Wohlarb W, Lasch J. The effect of liposomal incorporation of topically applied hydrocortisone on its serum concentration and urinary excretion. Dermatol Monatsschr. 1989;175:348–352.

    Google Scholar 

  33. Mezei M, Gulasekharam V. Liposomes: a selective drug delivery system for the topical route of administration. 1. Lotion dosage form. Life Sci. 1980;26:1473–1477.

    Article  CAS  PubMed  Google Scholar 

  34. Harsanyi BB, Hilchie JC, Mezei M. Liposomes as drug carriers for oral ulcers. J Dent Res. 1986;65:1133–1141.

    Article  CAS  PubMed  Google Scholar 

  35. Foong WC, Harsany BB, Mezei M. Biodisposition and histological evaluation of topically applied retinoic acid in liposomal, cream and gel dosage forms. In: Hanin I, Pepeu G, eds. Phospholipids, New York, NY: Plenum Press; 1990:279–282.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith J. Simons.

Additional information

Published: November 5, 2003

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elzainy, A.A.W., Gu, X., Simons, F.E.R. et al. Hydroxyzine from topical phospholipid liposomal formulations: Evaluation of peripheral antihistaminic activity and systemic absorption in a rabbit model. AAPS PharmSci 5, 28 (2003). https://doi.org/10.1208/ps050428

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/ps050428

Keywords

Navigation