Skip to main content

Advertisement

Log in

Nonviral gene delivery: What we know and what is next

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Gene delivery using nonviral approaches has been extensively studied as a basic tool for intracellular gene transfer and gene therapy. In the past, the primary focus has been on application of physical, chemical, and biological principles to development of a safe and efficient method that delivers a transgene into target cells for appropriate expression. This review summarizes the current status of the most commonly used nonviral methods, with an emphasis on their mechanism of action for gene delivery, and their advantages and limitations for gene therapy applications. The technical aspects of each delivery system are also reviewed, with a focus on how to achieve optimal delivery efficiency. A brief discussion of future development and further improvement of the current systems is intended to stimulate new ideas and encourage rapid advancement in this new and promising field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse musclein vivo.Science. 1990;247:1465–1468.

    PubMed  CAS  Google Scholar 

  2. Heller LC, Ugen K, Heller R. Electroporation for targeted gene transfer.Expert Opin Drug Deliv. 2005;2:255–268.

    PubMed  CAS  Google Scholar 

  3. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields.EMBO J. 1982;1:841–845.

    PubMed  CAS  Google Scholar 

  4. Yang NS, Burkholder J, Roberts B, Martinell B, McCabe D.In vivo andin vitro gene transfer to mammalian somatic cells by particle bom bardment.Proc Natl Acad Sci USA. 1990;87:9568–9572.

    PubMed  CAS  Google Scholar 

  5. Yang NS, Sun WH. Gene gun and other non-viral approaches for cancer gene therapy.Nat Med. 1995;1:481–483.

    PubMed  CAS  Google Scholar 

  6. Lawrie A, Brisken AF, Francis SE, Cumberland DC, Crossman DC, Newman CM. Microbubble-enhanced ultrasound for vascular gene delivery.Gene Ther. 2000;7:2023–2027.

    PubMed  CAS  Google Scholar 

  7. Lin F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA.Gene Ther. 1999;6:1258–1266.

    Google Scholar 

  8. Zhang G, Budker V, Wolff JA. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA.Hum Gene Ther. 1999;10:1735–1737.

    PubMed  CAS  Google Scholar 

  9. Neu M, Fischer D, Kissel T. Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives.J Gene Med. 2005;7:992–1009.

    PubMed  CAS  Google Scholar 

  10. Liu D, Ren T, Gao X. Cationic transfection lipids.Curr Med Chem. 2003;10:1307–1315.

    PubMed  CAS  Google Scholar 

  11. Huang L, Hung MC, Wagner E.Nonviral Vectors for Gene Therapy. San Diego, CA: Academic Press; 1999.

    Google Scholar 

  12. Mahato RI, Kim SW.Pharmaceutical Perspectives of Nucleic Acid-Based Therapeutics. London, UK: Taylor & Francis; 2002.

    Google Scholar 

  13. Hickman MA, Malone RW, Lehmann-Bruinsma K, et al. Gene expression following direct injection of DNA into liver.Hum Gene Ther. 1994;5:1477–1483.

    PubMed  CAS  Google Scholar 

  14. Zhang G, Vargo D, Budker V, Armstrong N, Knechtle S, Wolff JA. Expression of naked plasmid DNA injected into the afferent and efferent vessels of rodent and dog livers.Hum Gene Ther. 1997;8:1763–1772.

    PubMed  CAS  Google Scholar 

  15. Budker V, Zhang G, Knechtle S, Wolff JA. Naked DNA delivered intraportally expresses efficiently in hepatocytes.Gene Ther. 1996;3:593–598.

    PubMed  CAS  Google Scholar 

  16. Choate KA, Khavari PA. Direct cutaneous gene delivery in a human genetic skin disease.Hum Gene Ther. 1997;8:1659–1665.

    PubMed  CAS  Google Scholar 

  17. Meyer KB, Jr, Thompson MM, Jr, Levy MY, Jr, Barron LG, Jr, Szoka FC, Jr. Intratracheal gene delivery to the mouse airway: characterization of plasmid DNA expression and pharmacokinetics.Gene Ther. 1995;2:450–460.

    PubMed  CAS  Google Scholar 

  18. Sato Y, Yamauchi N, Takahashi M, et al. In vivo gene delivery to tumor cells by transferrin-streptavidin-DNA conjugate.FASEB J. 2000;14:2108–2118.

    PubMed  CAS  Google Scholar 

  19. Schughart K, Rasmussen UB. Solvoplex synthetic vector for intrapulmonary gene delivery. Preparation and use.Methods Mol Med. 2002;69:83–94.

    PubMed  CAS  Google Scholar 

  20. Schughart K, Bischoff R, Rasmussen UB, et al. Solvoplex: a new type of synthetic vector for intrapulmonary gene delivery.Hum Gene Ther. 1999;10:2891–2905.

    PubMed  CAS  Google Scholar 

  21. Desigaux L, Gourden C, Bello-Roufai M, et al. Nonionic amphiphilic block copolymers promote gene transfer to the lung.Hum Gene Ther. 2005;16:821–829.

    PubMed  CAS  Google Scholar 

  22. Freeman DJ, Niven RW. The influence of sodium glycocholate and other additives on the in vivo transfection of plasmid DNA in the lungs.Pharm Res. 1996;13:202–209.

    PubMed  CAS  Google Scholar 

  23. Lemoine JL, Farley R, Huang L. Mechanism of efficient transfection of the nasal airway epithelium by hypotonic shock.Gene Ther. 2005;12:1275–1282.

    PubMed  CAS  Google Scholar 

  24. Ross GF, Bruno MD, Uyeda M, et al. Enhanced reporter gene expression in cells transfected in the presence of DMI-2, an acid nuclease inhibitor.Gene Ther. 1998;5:1244–1250.

    PubMed  CAS  Google Scholar 

  25. Walther W, Stein U, Siegel R, Fichtner I, Schlag PM. Use of the nuclease inhibitor aurintricarboxylic acid (ATA) for improved non-viral intratumoral in vivo gene transfer by jet-injection.J Gene Med. 2005;7:477–485.

    PubMed  CAS  Google Scholar 

  26. Glasspool-Malone J, Malone RW. Marked enhancement of direct respiratory tissue transfection by aurintricarboxylic acid.Hum Gene Ther. 1999;10:1703–1713.

    PubMed  CAS  Google Scholar 

  27. O'Brien J, Lummis SC. An improved method of preparing microcarriers for biolistic transfection.Brain Res Brain Res Protoc. 2002;10:12–15.

    PubMed  Google Scholar 

  28. Hasson E, Slovatizky Y, Shimoni Y, Falk H, Panet A, Mitrani E. Solid tissues can be manipulated ex vivo and used as vehicles for gene therapy.J Gene Med. 2005;7:926–935.

    PubMed  CAS  Google Scholar 

  29. Dean DA, Machado-Aranda D, Blair-Parks K, Yeldandi AV, Young JL. Electroporation as a method for high-level nonviral gene transfer to the lung.Gene Ther. 2003;10:1608–1615.

    PubMed  CAS  Google Scholar 

  30. Magin-Lachmann C, Kotzamanis G, D'Aiuto L, Cooke H, Huxley C, Wagner E. In vitro and in vivo delivery of intact BAC DNA— comparison of different methods.J Gene Med. 2004;6:195–209.

    PubMed  CAS  Google Scholar 

  31. Molnar MJ, Gilbert R, Lu Y, et al. Factors influencing the efficacy, longevity, and safety of electroporation-assisted plasmid-based gene transfer into mouse muscles.Mol Ther. 2004;10:447–455.

    PubMed  CAS  Google Scholar 

  32. McMahon JM, Wells DJ. Electroporation for gene transfer to skeletal muscles: current status.Bio Drugs. 2004;18:155–165.

    CAS  Google Scholar 

  33. McMahon JM, Signori E, Wells KE, Fazio VM, Wells DJ. Optimisation of electrotransfer of plasmid into skeletal muscle by pretreatment with hyaluronidase—increased expression with reduced muscle damage.Gene Ther. 2001;8:1264–1270.

    PubMed  CAS  Google Scholar 

  34. Sakai M, Nishikawa M, Thanaketpaisarn O, Yamashita F, Hashida M. Hepatocyte-targeted gene transfer by combination of vascularly delivered plasmid DNA andin vivo electroporation.Gene Ther. 2005;12:607–616.

    PubMed  CAS  Google Scholar 

  35. Durieux AC, Bonnefoy R, Busso T, Freyssenet D.In vivo gene electrotransfer into skeletal muscle: effects of plasmid DNA on the occurrence and extent of muscle damage.J Gene Med. 2004;6:809–816.

    PubMed  CAS  Google Scholar 

  36. Gissel H, Clausen T. Excitation-induced Ca2+ influx and skeletal muscle cell damage.Acta Physiol Scand. 2001;171:327–334.

    PubMed  CAS  Google Scholar 

  37. Kim HJ, Greenleaf JF, Kinnick RR, Bronk JT, Bolander ME. Ultrasound-mediated transfection of mammalian cells.Hum Gene Ther. 1996;7:1339–1346.

    PubMed  CAS  Google Scholar 

  38. Liang HD, Lu QL, Xue SA, et al. Optimisation of ultrasound-mediated gene transfer (sonoporation) in skeletal muscle cells.Ultrasound Med Biol. 2004;30:1523–1529.

    PubMed  Google Scholar 

  39. Huber PE, Jenne J, Debus J, Wannenmacher MF, Pfisterer P. A comparison of shock wave and sinusoidal-focused ultrasound-induced localized transfection of HeLa cells.Ultrasound Med Biol. 1999;25:1451–1457.

    PubMed  CAS  Google Scholar 

  40. Nozaki T, Jr, Ogawa R, Jr, Feril LB, Jr, Kagiya G, Fuse H, Kondo T. Enhancement of ultrasound-mediated gene transfection by membrane modification.J Gene Med. 2003;5:1046–1055.

    PubMed  CAS  Google Scholar 

  41. Ogawa R, Jr, Kagiya G, Jr, Feril LB, Jr, et al. Ultrasound mediated intravesical transfection enhanced by treatment with lidocaine or heat.J Urol. 2004;172:1469–1473.

    PubMed  CAS  Google Scholar 

  42. Koch S, Pohl P, Cobet U, Rainov NG. Ultrasound enhancement of liposome-mediated cell transfection is caused by cavitation effects.Ultrasound Med Biol. 2000;26:897–903.

    PubMed  CAS  Google Scholar 

  43. Anwer K, Kao G, Proctor B, et al. Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration.Gene Ther. 2000;7:1833–1839.

    PubMed  CAS  Google Scholar 

  44. Unger EC, Hersh E, Vannan M, Matsunaga TO, McCreery T. Local drug and gene delivery through microbubbles.Prog Cardiovasc Dis. 2001;44:45–54.

    PubMed  CAS  Google Scholar 

  45. Zhang G, Gao X, Song YK, et al. Hydroporation as the mechanism of hydrodynamic delivery.Gene Ther. 2004;11:675–682.

    PubMed  CAS  Google Scholar 

  46. Al-Dosari MS, Knapp JE, Liu D. Hydrodynamic delivery.Adv Genet. 2005;54:65–82.

    PubMed  CAS  Google Scholar 

  47. Miao CH, Thompson AR, Loeb K, Ye X. Long-term and therapeutic-level hepatic gene expression of human factor IX after naked plasmid transferin vivo.Mol Ther. 2001;3:947–957.

    PubMed  CAS  Google Scholar 

  48. Miao CH, Ye X, Thompson AR. High-level factor VIII gene expressionin vivo achieved by nonviral liver-specific gene therapy vectors.Hum Gene Ther. 2003;14:1297–1305.

    PubMed  CAS  Google Scholar 

  49. Zhang G, Song YK, Liu D. Long-term expression of human alpha1-antitrypsin gene in mouse liver achieved by intravenous administration of plasmid DNA using a hydrodynamics-based procedure.Gene Ther. 2000;7:1344–1349.

    PubMed  CAS  Google Scholar 

  50. Alino SF, Crespo A, Dasi F. Long-term therapeutic levels of human alpha-1 antitrypsin in plasma after hydrodynamic injection of nonviral DNA.Gene Ther. 2003;10:1672–1679.

    PubMed  CAS  Google Scholar 

  51. Stoll SM, Sclimenti CR, Baba EJ, Meuse L, Kay MA, Calos MP. Epstein-Barr virus/human vector provides high-level, long-term expression of alpha1-antitrypsin in mice.Mol Ther. 2001;4:122–129.

    PubMed  CAS  Google Scholar 

  52. Jiang J, Yamato E, Miyazaki J. Intravenous delivery of naked plasmid DNA forin vivo cytokine expression.Biochem Biophys Res Commun. 2001;289:1088–1092.

    PubMed  CAS  Google Scholar 

  53. Yang J, Chen S, Huang L, Michalopoulos GK, Liu Y. Sustained expression of naked plasmid DNA encoding hepatocyte growth factor in mice promotes liver and overall body growth.Hepatology. 2001;33:848–859.

    PubMed  CAS  Google Scholar 

  54. Maruyama H, Higuchi N, Kameda S, Miyazaki J, Gejyo F. Rat liver-targeted naked plasmid DNA transfer by tail vein injection.Mol Biotechnol. 2004;26:165–172.

    PubMed  CAS  Google Scholar 

  55. Eastman SJ, Baskin KM, Hodges BL, et al. Development of catheter-based procedures for transducing the isolated rabbit liver with plasmid DNA.Hum Gene Ther. 2002;13:2065–2077.

    PubMed  CAS  Google Scholar 

  56. Alino SF, Herrero MJ, Noguera I, Dasi F, Sanchez M. Pig liver gene therapy by noninvasive interventionist catheterism.Gene Ther. 2007;14:334–343.

    PubMed  CAS  Google Scholar 

  57. Yoshino H, Hashizume K, Kobayashi E. Naked plasmid DNA transfer to the porcine liver using rapid injection with large volume.Gene Ther. 2006;13:1696–1702.

    PubMed  CAS  Google Scholar 

  58. Felgner PL, Gadek TR, Holm M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure.Proc Natl Acad Sci USA. 1987;84:7413–7417.

    PubMed  CAS  Google Scholar 

  59. Xu Y, Jr, Szoka FC, Jr. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection.Biochemistry. 1996;35:5616–5623.

    PubMed  CAS  Google Scholar 

  60. Farhood H, Serbina N, Huang L. The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer.Biochim Biophys Acta. 1995;1235:289–295.

    PubMed  Google Scholar 

  61. Wrobel I, Collins D. Fusion of cationic liposomes with mammalian cells occurs after endocytosis.Biochim Biophys Acta. 1995;1235:296–304.

    PubMed  Google Scholar 

  62. Litzinger DC, Huang L. Phosphatidylethanolamine liposomes: drug delivery, gene transfer and immunodiagnostic applications.Biochim Biophys Acta. 1992;1113:201–227.

    PubMed  CAS  Google Scholar 

  63. El Ouahabi A, Thiry M, Pector V, Fuks R, Ruysschaert JM, Vandenbranden M. The role of endosome destabilizing activity in the gene transfer process mediated by cationic lipids.FEBS Lett. 1997;414:187–192.

    PubMed  Google Scholar 

  64. Behr JP, Demeneix B, Loeffler JP, Perez-Mutul J. Efficient gene transfer into mammalian primary endocrine cells with lipopolyaminecoated DNA.Proc Natl Acad Sci USA. 1989;86:6982–6986.

    PubMed  CAS  Google Scholar 

  65. Pedroso de Lima MC, Simoes S, Pires P, Faneca H, Duzgunes N. Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications.Adv Drug Deliv Rev. 2001:47:277–294.

    PubMed  CAS  Google Scholar 

  66. Sternberg B, Sorgi FL, Huang L. New structures in complex formation between DNA and cationic liposomes visualized by freezefracture electron microscopy.FEBS Lett. 1994;356:361–366

    PubMed  CAS  Google Scholar 

  67. Lin AJ, Slack NL, Ahmad A, George CX, Samuel CE, Safinya CR. Three-dimensional imaging of lipid gene-carriers: membrane charge density controls universal transfection behavior in lamellar cationic liposome-DNA complexes.Biophys J. 2003;84:3307–3316.

    PubMed  CAS  Google Scholar 

  68. Thierry AR, Rabinovich P, Peng B, Mahan LC, Bryant JL, Gallo RC. Characterization of liposome-mediated gene delivery: expression, stability and pharmacokinetics of plasmid DNA.Gene Ther. 1997;4:226–237.

    PubMed  CAS  Google Scholar 

  69. Koltover I, Salditt T, Radler JO, Safinya CR. An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery.Science. 1998;281:78–81.

    PubMed  CAS  Google Scholar 

  70. Hofland HE, Shephard L, Sullivan SM. Formation of stable cationic lipid/DNA complexes for gene transfer.Proc. Natl Acad Sci USA. 1996;93:7305–7309.

    PubMed  CAS  Google Scholar 

  71. Dauty E, Remy JS, Zuber G, Behr JP. Intracellular delivery of nanometric DNA particles via the folate receptor.Bioconjung Chem. 2002;13:831–839.

    CAS  Google Scholar 

  72. Li S, Tseng WC, Stolz DB, Wu SP, Watkins SC, Huang L. Dynamic changes in the characteristics of cationic lipidic vectors after exposure to mouse serum: implications for intravenous lipofection.Gene Ther. 1999;6:585–594.

    PubMed  CAS  Google Scholar 

  73. Simberg D, Weisman S, Talmon Y, Faerman A, Shoshani T, Barenholz Y. The role of organ vascularization and lipoplex-serum initial contact in intravenous murine lipofection.J Biol Chem. 2003;278:39858–39865.

    PubMed  CAS  Google Scholar 

  74. Song YK, Liu F, Chu S, Liu D. Characterization of cationic liposome-mediated gene transfer in vivo by intravenous administration.Hum Gene Ther. 1997;8:1585–1594.

    PubMed  CAS  Google Scholar 

  75. Templeton NS, Lasic DD, Frederik PM, Strey HH, Roberts DD, Pavlakis GN. Improved DNA: liposome complexes for increased systemic delivery and gene expression.Nat Biotechnol. 1997;15:647–652.

    PubMed  CAS  Google Scholar 

  76. Thierry AR, Lunardi-Iskandar Y, Bryant JL, Rabinovich P, Gallo RC, Mahan LC. Systemic gene therapy: biodistribution and long-term expression of a transgene in mice.Proc Natl Acad Sci USA. 1995;92:9742–9746.

    PubMed  CAS  Google Scholar 

  77. Hyde SC, Southern KW, Gileadi U, et al. Repeat administration of DNA/liposomes to the nasal epithelium of patients with cystic fibrosis.Gene Ther. 2000;7:1156–1165.

    PubMed  CAS  Google Scholar 

  78. Noone PG, Hohneker KW, Zhou Z, et al. Safety and biological efficacy of a lipid-CFTR complex for gene transfer in the nasal epithelium of adult patients with cystic fibrosis.Mol Ther. 2000;1:105–114.

    PubMed  CAS  Google Scholar 

  79. Bragonzi A, Dina G, Villa A, et al. Biodistribution and transgene expression with nonviral cationic vector/DNA complexes in the lungs.Gene Ther. 2000;7:1753–1760.

    PubMed  CAS  Google Scholar 

  80. Middleton PG, Caplen NJ, Gao X, et al. Nasal application of the cationic liposome DC-Chol: DOPE does not alter ion transport, lung function or bacterial growth.Eur Respir J. 1994;7:442–445.

    PubMed  CAS  Google Scholar 

  81. Lee ER, Marshall J, Siegel CS, et al. Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung.Hum Gene Ther. 1996;7:1701–1717.

    PubMed  CAS  Google Scholar 

  82. Duncan JE, Whitsett JA, Horowitz AD. Pulmonary surfactant inhibits cationic liposome-mediated gene delivery to respiratory epithelial cellsin vitro.Hum Gene Ther. 1997;8:431–438.

    PubMed  CAS  Google Scholar 

  83. Rosenecker J, Naundorf S, Gersting SW, et al. Interaction of bronchoalveolar lavage fluid with polyplexes and lipoplexes: analysing the role of proteins and glycoproteins.J Gene Med. 2003;5:49–60.

    PubMed  CAS  Google Scholar 

  84. Song YK, Liu F, Liu D. Enhanced gene expression in mouse lung by prolonging the retention time of intravenously injected plasmid DNA.Gene Ther. 1998;5:1531–1537.

    PubMed  CAS  Google Scholar 

  85. Ruiz FE, Clancy JP, Perricone MA, et al. A clinical inflammatory syndrome attributable to aerosolized lipid-DNA administration in cystic fibrosis.Hum Gene Ther. 2001;12:751–761.

    PubMed  CAS  Google Scholar 

  86. Scheule RK, St George JA, Bagley RG, et al. Basis of pulmonary toxicity associated with cationic lipid-mediated gene transfer to the mammalian lung.Hum Gene Ther. 1997;8:689–707.

    Article  PubMed  CAS  Google Scholar 

  87. Yew NS, Scheule RK. Toxicity of cationic lipid-DNA complexes.Adv Genet. 2005;53:189–214.

    Article  PubMed  CAS  Google Scholar 

  88. Krieg AM. Direct immunologic activities of CpG DNA and implications for gene therapy.J Gene Med. 1999;1:56–63.

    PubMed  CAS  Google Scholar 

  89. McLachlan G, Stevenson BJ, Davidson DJ, Porteous DJ. Bacterial DNA is implicated in the inflammatory response to delivery of DNA/DOTAP to mouse lungs.Gene Ther. 2000;7:384–392.

    PubMed  CAS  Google Scholar 

  90. Yew NS, Wang KX, Przybylska M, et al. Contribution of plasmid DNA to inflammation in the lung after administration of cationic lipid: pDNA complexes.Hum Gene Ther. 1999;10:223–234.

    PubMed  CAS  Google Scholar 

  91. Plank C, Jr, Mechtler K, Jr, Szoka FC, Jr, Wagner E. Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery.Hum Gene Ther. 1996;7:1437–1446.

    PubMed  CAS  Google Scholar 

  92. Fenske DB, MacLachlan I, Cullis PR. Long-circulating vectors for the systemic delivery of genes.Curr Opin Mol Ther. 2001;3:153–158.

    PubMed  CAS  Google Scholar 

  93. Song LY, Ahkong QF, Rong Q, et al. Characterization of the inhibitory effect of PEG-lipid conjugates on the intracellular delivery of plasmid and antisense DNA mediated by cationic lipid liposomes.Biochim Biophys Acta. 2002;1558:1–13.

    PubMed  CAS  Google Scholar 

  94. Ambegia E, Ansell S, Cullis P, Heyes J, Palmer L, MacLachlan I. Stabilized plasmid-lipid particles containing PEG-diacylglycerols exhibit extended circulation lifetimes and tumor selective gene expression.Biochim Biophys Acta. 2005;1669:155–163.

    PubMed  CAS  Google Scholar 

  95. Guo X, Jr, Szoka FC, Jr. Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG-diortho ester-lipid conjugate.Bioconjug Chem. 2001;12:291–300.

    PubMed  CAS  Google Scholar 

  96. Wetzer B, Byk G, Frederic M, et al. Reducible cationic lipids for gene transfer.Biochem J. 2001;356:747–756.

    PubMed  CAS  Google Scholar 

  97. Huang Z, Jr, Li W, Jr, MacKay JA, Jr, Szoka F, Jr. Thiocholesterol-based lipids for ordered assembly of bioresponsive gene carriers.Mol Ther. 2005;11:409–417.

    PubMed  CAS  Google Scholar 

  98. Tang F, Hughes JA. Use of dithiodiglycolic acid as a tether for cationic lipids decreases the cytotoxicity and increases transgene expression of plasmid DNAin vitro.Bioconjug Chem. 1999;10:791–796.

    PubMed  CAS  Google Scholar 

  99. Singh RS, Goncalves C, Sandrin P, Pichon C, Midoux P, Chaudhuri A. On the gene delivery efficacies of pH-sensitive cationic lipids via endosomal protonation: a chemical biology investigation.Chem Biol. 2004;11:713–723.

    PubMed  CAS  Google Scholar 

  100. Wu GY, Wu CH. Receptor-mediated gene delivery and expression in vivo.J Biol Chem. 1988;263:14621–14624.

    PubMed  CAS  Google Scholar 

  101. Boussif O, Lezoualch F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture andin vivo: polyethylenimine.Proc Natl Acad Sci USA. 1995;92:7297–7301.

    PubMed  CAS  Google Scholar 

  102. Goula D, Remy JS, Erbacher P, et al. Size, diffusibility and transfection performance of linear PEI/DNA complexes in the mouse central nervous system.Gene Ther. 1998;5:712–717.

    PubMed  CAS  Google Scholar 

  103. Chemin I, Moradpour D, Wieland S, et al. Liver-directed gene transfer: a linear polyethylenimine derivative mediates highly efficient DNA delivery to primary hepatocytes in vitro and in vivo.J Viral Hepat. 1998;5:369–375.

    PubMed  CAS  Google Scholar 

  104. Haensler J, Jr, Szoka FC, Jr. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture.Bioconjug Chem. 1993;4:372–379.

    PubMed  CAS  Google Scholar 

  105. Tang MX, Jr, Redemann CT, Jr, Szoka FC, Jr.In vitro gene delivery by degraded polyamidoamine dendrimers.Bioconjug Chem. 1996;7:703–714.

    PubMed  CAS  Google Scholar 

  106. Rudolph C, Lausier J, Naundorf S, Muller RH, Rosenecker J.In vivo gene delivery to the lung using polyethylenimine and fractured polyamidoamine dendrimers.J Gene Med. 2002;2:269–278.

    Google Scholar 

  107. Schatzlein AG, Zinselmeyer BH, Elouzi A, et al. Preferential liver gene expression with polypropylenimine dendrimers.J Control Release. 2005;101:247–258.

    PubMed  CAS  Google Scholar 

  108. Hosseinkhani H, Azzam T, Tabata Y, Domb AJ. Dextran-spermine polycation: an efficient nonviral vector forin vitro andin vivo gene transfection.Gene Ther. 2004;11:194–203.

    PubMed  CAS  Google Scholar 

  109. Leong KW, Mao HQ, Truong-Le VL, Roy K, Walsh SM, August JT. DNA-polycation nanospheres as non-viral gene delivery vehicles.J Control Release. 1998;53:183–193.

    PubMed  CAS  Google Scholar 

  110. Erbacher P, Zou S, Bettinger T, Steffan AM, Remy JS. Chitosanbased vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability.Pharm Res. 1998;15:1332–1339.

    PubMed  CAS  Google Scholar 

  111. Venkatesh S, Smith TJ. Chitosan-mediated transfection of HeLa cells.Pharm Dev Technol. 1997;2:417–418.

    PubMed  CAS  Google Scholar 

  112. Lee KY, Kwon IC, Kim YH, Jo WH, Jeong SY. Preparation of chitosan self-aggregates as a gene delivery system.J Control Release. 1998;51:213–220.

    PubMed  CAS  Google Scholar 

  113. Balicki D, Beutler E. Histone H2A significantly enhances in vitro DNA transfection.Mol Med. 1997;3:782–787.

    PubMed  CAS  Google Scholar 

  114. Balicki D, Putnam CD, Scaria PV, Beutler E. Structure and function correlation in histone H2A peptide-mediated gene transfer.Proc Natl Acad Sci USA 2002;99:7467–7471.

    PubMed  CAS  Google Scholar 

  115. Park YJ, Liang JF, Ko KS, Kim SW, Yang VC. Low molecular weight protamine as an efficient and nontoxic gene carrier:in vitro study.J Gene Med. 2003;5:700–711.

    PubMed  CAS  Google Scholar 

  116. von Harpe A, Petersen H, Li Y, Kissel T. Characterization of commercially available and synthesized polyethylenimines for gene delivery.J Control Release. 2000;69:309–322.

    Google Scholar 

  117. Wightman L, Kircheis R, Rossler V, et al. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo.J Gene Med. 2001;3:362–372.

    PubMed  CAS  Google Scholar 

  118. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis.Biomaterials. 2003;24:1121–1131.

    PubMed  CAS  Google Scholar 

  119. Fischer D, Bieber T, Li Y, Elsasser HP, Kissel T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity.Pharm Res. 1999;16:1273–1279.

    PubMed  CAS  Google Scholar 

  120. Gosselin MA, Guo W, Lee RJ. Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine.Bioconjug Chem. 2001;12:989–994.

    PubMed  CAS  Google Scholar 

  121. Forrest ML, Koerber JT, Pack DW. A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery.Bioconjug Chem. 2003;14:934–940.

    PubMed  CAS  Google Scholar 

  122. Thomas M, Klibanov AM. Conjugation to gold nanoparticles enhances polyethylenimine's transfer of plasmid DNA into mammalian cells.Proc Natl Acad Sci USA. 2003;100:9138–9143.

    PubMed  CAS  Google Scholar 

  123. Zhu J, Tang A, Law LP, et al. Amphiphilic core-shell nanoparticles with poly(ethylenimine) shells as potential gene delivery carriers.Bioconjug Chem. 2005;16:139–146.

    PubMed  CAS  Google Scholar 

  124. Manuel WS, Zheng JI, Hornsby PJ. Transfection by polyethyleneimine-coated microspheres.J Drug Target. 2001;9:15–22.

    Article  PubMed  CAS  Google Scholar 

  125. Thomas M, Klibanov AM. Enhancing polyethylenimine's delivery of plasmid DNA into mammalian cells.Proc Natl Acad Sci USA. 2002;99:14640–14645.

    PubMed  CAS  Google Scholar 

  126. Han S, Mahato RI, Kim SW. Water-soluble lipopolymer for gene delivery.Bioconjug Chem. 2001;12:337–345.

    CAS  Google Scholar 

  127. Ogris M, Carlisle RC, Bettinger T, Seymour LW. Melittin enables efficient vesicular escape and enhanced nuclear access of nonviral gene delivery vectors.J Biol Chem. 2001;276:47550–47555.

    PubMed  CAS  Google Scholar 

  128. Boeckle S, Fahrmeir J, Roedl W, Ogris M, Wagner E. Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes.J Control Release. 2006;112:240–248.

    PubMed  CAS  Google Scholar 

  129. Kichler A. Gene transfer with modified polyethylenimines.J Gene Med. 2004;6:S3–10.

    Google Scholar 

  130. Goula D, Benoist C, Mantero S, Merlo G, Levi G, Demeneix BA. Polyethylenimine-based intravenous delivery of transgenes to mouse lung.Gene Ther. 1998;5:1291–1295.

    PubMed  CAS  Google Scholar 

  131. Sweeney P, Karashima T, Ishikura H, et al. Efficient therapeutic gene delivery after systemic administration of a novel polyethylenimine/DNA vector in an orthotopic bladder cancer model.Cancer Res. 2003;63:4017–4020.

    PubMed  CAS  Google Scholar 

  132. Wagner E. Strategies to improve DNA polyplexes forin vivo gene transfer: will “artificial viruses” be the answer?Pharm Res. 2004;21:8–14.

    PubMed  CAS  Google Scholar 

  133. Gautam A, Densmore CL, Xu B, Waldrep JC. Enhanced gene expression in mouse lung after PEI-DNA aerosol delivery.Mol Ther. 2000;2:63–70.

    PubMed  CAS  Google Scholar 

  134. Akinc A, Anderson DG, Lynn DM, Langer R. Synthesis of poly(beta-amino ester)s optimized for highly effective gene delivery.Bioconjug Chem. 2003;14:979–988.

    PubMed  CAS  Google Scholar 

  135. Lim YB, Kim SM, Suh H, Park JS. Biodegradable, endosome disruptive, and cationic network-type polymer as a highly efficient and nontoxic gene delivery carrier.Bioconjug Chem. 2002;13:952–957.

    PubMed  CAS  Google Scholar 

  136. Lim YB, Han SO, Kong HU, et al. Biodegradable polyester, poly[alpha-(4-aminobutyl)-L-glycolic acid], as a non-toxic gene carrier.Pharm Res. 2000;17:811–816.

    PubMed  CAS  Google Scholar 

  137. Sonawane ND, Jr, Szoka FC, Jr, Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes.J Biol Chem. 2003;278:44826–44831.

    PubMed  CAS  Google Scholar 

  138. Rudolph C, Plank C, Lausier J, Schillinger U, Muller RH, Rosenecker J. Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells.J Biol Chem. 2003;278:11411–11418.

    PubMed  CAS  Google Scholar 

  139. Avrameas A, Ternynck T, Nato F, Buttin G, Avrameas S. Polyreactive anti-DNA monoclonal antibodies and a derived peptide as vectors for the intracytoplasmic and intranuclear translocation of macromolecules.Proc Natl Acad Sci USA. 1998;95:5601–5606.

    PubMed  CAS  Google Scholar 

  140. Gao X, Huang L. Potentiation of cationic liposome-mediated gene delivery by polycations.Biochemistry 1996;35:1027–1036.

    PubMed  CAS  Google Scholar 

  141. Sorgi FL, Bhattacharya S, Huang L. Protamine sulfate enhances lipid-mediated gene transfer.Gene Ther. 1997;4:961–968.

    PubMed  CAS  Google Scholar 

  142. Lee RJ, Huang L. Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer.J Biol Chem. 1996;271:8481–8487.

    PubMed  CAS  Google Scholar 

  143. Lee LK, Williams CL, Devore D, Roth CM. Poly(propylacrylic acid) enhances cationic lipid-mediated delivery of antisense oligonucleotides.Biomacromolecules. 2006;7:1502–1508.

    PubMed  CAS  Google Scholar 

  144. Li S, Huang L.In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes.Gene Ther. 1997;4:891–900.

    PubMed  CAS  Google Scholar 

  145. Murphy EA, Waring AJ, Haynes SM, Longmuir KJ. Compaction of DNA in an anionic micelle environment followed by assembly into phosphatidylcholine liposomes.Nucleic Acids Res. 2000;28:2986–2992.

    PubMed  CAS  Google Scholar 

  146. Murphy EA, Waring AJ, Murphy JC, Willson RC, Longmuir KJ. Development of an effective gene delivery system: a study of complexes composed of a peptide-based amphiphilic DNA compaction agent and phospholipid.Nucleic Acids Res. 2001;29:3694–3704.

    PubMed  CAS  Google Scholar 

  147. Longmuir KJ, Haynes SM, Dickinson ME, Murphy JC, Willson RC, Waring AJ. Optimization of a peptide/non-cationic lipid gene delivery system for effective microinjection into chicken embryo in vivo.Mol Ther. 2001;4:66–74.

    PubMed  CAS  Google Scholar 

  148. Maitra A. Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy.Expert Rev Mol Diagn. 2005;5:893–905.

    PubMed  CAS  Google Scholar 

  149. Megeed Z, Jr, Haider M, Jr, Li D, Jr, O'Malley BW, Jr, Cappello J, Ghandehari H.In vitro andin vivo evaluation of recombinant silkelastinlike hydrogels for cancer gene therapy.J Control Release. 2004;94:433–445.

    PubMed  CAS  Google Scholar 

  150. Wagner E. Application of membrane-active peptides for nonviral gene delivery.Adv Drug Deliv Rev. 1999;38:279–289.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dexi Liu.

Additional information

Published: March 23, 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, X., Kim, KS. & Liu, D. Nonviral gene delivery: What we know and what is next. AAPS J 9, 9 (2007). https://doi.org/10.1208/aapsj0901009

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj0901009

Keywords

Navigation