Skip to main content
Log in

Leucine‑enriched essential amino acids promote muscle protein synthesis and ameliorate exercise-induced exhaustion in prolonged endurance exercise in rats

  • Research
  • Published:
Nutrire Aims and scope Submit manuscript

Abstract

Background

Long-term endurance exercise results in muscle damage as well as muscle protein synthesis (MPS). Recovery from endurance exercise leads to enhancement of physical performance and amelioration of a series of exhaustion-related syndromes. The use of essential amino acids has become a common practice to provide stimulation of MPS and post-exercise recovery. The aim of this study was to investigate MPS and exhaustion amelioration effects of leucine-enriched essential amino acids (LEAA) in specific ratio.

Methods

Our proposal was verified by long-term loaded-swimming exercise model in rats. Male Wistar rats were administered LEAA or whey protein solution 30 min after loaded-swimming exercise for 7 weeks. After experimental period, all rats performed the loaded-swimming test until exhaustion.

Results

Our results showed that the muscle content of the LEAA group significantly increased muscle content (0.016 ± 0.0013) compared with the Rested control (0.013 ± 0.0004) and Exercise groups (0.015 ± 0.0012), respectively. The plasma levels of BCAA (leucine, isoleucine, and valine; pmol/L) (415.3 ± 25.88, 254.7 ± 12.96, 367.1 ± 33.46) were significantly higher in LEAA group compared with the whey protein interventions with exercise (312.2 ± 21.67, 199.8 ± 8.37, 281.4 ± 12.66). LEAA ingestion significantly activated mTOR/p70S6K1 signaling pathway to stimulate MPS. Furthermore, the ingestion of LEAA enhanced the time to exhaustion (108.6 ± 5.75), increased the GSH content, and decreased the levels of blood lactic acid (BLA) and blood urea nitrogen (BUN) in recovery phase.

Conclusions

These results collectively suggest that LEAA ingestion with long-term endurance exercise can improve MPS and ameliorate exhaustion in rats after long-term exercise. And those effects were better than WP ingestion. Our study may provide valuable information for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The datasets generated and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

Abbreviations

MPS:

Muscle protein synthesis

LEAA:

Leucine-enriched essential amino acids

BCAA:

Leucine, isoleucine, and valine

mTOR:

Mammalian target of rapamycin

p70S6K1:

Ribosomal protein S6 kinase

GSH:

Glutathione

BLA:

Blood lactic acid

BUN:

Blood urea nitrogen

WP:

Whey protein

4EBP:

4E-binding protein 1

Akt:

Protein kinase B

FOXO1:

Forkhead box O1

ROS:

Reactive oxygen species

References

  1. Booth FW, Ruegsegger GN, Toedebusch RG, Yan Z. Endurance exercise and the regulation of skeletal muscle metabolism. Prog Mol Biol Transl Sci. 2015;135:129–51.

    Article  PubMed  Google Scholar 

  2. Koshinaka K, Honda A, Masuda H, Sato A. Effect of quercetin treatment on mitochondrial biogenesis and exercise-induced amp-activated protein kinase activation in rat skeletal muscle. Nutrients. 2020;12:729.

    Article  CAS  PubMed Central  Google Scholar 

  3. Yamanashi K, Kinugawa S, Fukushima A, Kakutani N, Takada S, Obata Y, Nakano I, Yokota T, Kitaura Y, Shimomura Y, Anzai T. Branched-chain amino acid supplementation ameliorates angiotensin II-induced skeletal muscle atrophy. Life Sci. 2020;250:117593.

    Article  CAS  PubMed  Google Scholar 

  4. Sumi K, Ashida K, Nakazato K. Resistance exercise with anti-inflammatory foods attenuates skeletal muscle atrophy induced by chronic inflammation. J Appl Physiol. 1985;2020(128):197–211.

    Google Scholar 

  5. Rowlands DS, Nelson AR, Phillips SM, Faulkner JA, Clarke J, Burd NA, Moore D, Stellingwerff T. Protein-leucine fed dose effects on muscle protein synthesis after endurance exercise. Med Sci Sports Exerc. 2015;47:547–55.

    Article  CAS  PubMed  Google Scholar 

  6. Kamei Y, Hatazawa Y, Uchitomi R, Yoshimura R, Miura S. Regulation of skeletal muscle function by amino acids. Nutrients. 2020;12(1):261.

    Article  CAS  PubMed Central  Google Scholar 

  7. Ge Y, Wu AL, Warnes C, Liu J, Zhang C, Kawasome H, Terada N, Boppart MD, Schoenherr CJ, Chen J. mTOR regulates skeletal muscle regeneration in vivo through kinase-dependent and kinase-independent mechanisms. Am J Physiol Cell Physiol. 2009;297:C1434-1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wilkinson DJ, Bukhari SSI, Phillips BE, Limb MC, Cegielski J, Brook MS, Rankin D, Mitchell WK, Kobayashi H, Williams JP, Lund J, Greenhaff PL, Smith K, Atherton PJ. Effects of leucine-enriched essential amino acid and whey protein bolus dosing upon skeletal muscle protein synthesis at rest and after exercise in older women. Clin Nutr. 2018;37:2011–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Milan G, Romanello V, Pescatore F, Armani A, Paik JH, Frasson L, Seydel A, Zhao J, Abraham R, Goldberg AL, Blaauw B, DePinho RA, Sandri M. Regulation of autophagy and the ubiquitin-proteasome system by the FOXO transcriptional network during muscle atrophy. Nat Commun. 2015;6:6670.

    Article  CAS  PubMed  Google Scholar 

  10. Wim A, Gijsbertus JV. Exercise and fatigue. Sports Med. 2009;39(5):389–422.

    Article  Google Scholar 

  11. Duan F-f, Guo Y, Li J-w, Yuan K. Antifatigue effect of luteolin-6-c-neohesperidoside on oxidative stress injury induced by forced swimming of rats through modulation of Nrf2/are signaling pathways. Oxid Med Cell Longev. 2017;2017:1–13.

    Article  Google Scholar 

  12. Lundsgaard A-M, Fritzen AM, Kiens B. The importance of fatty acids as nutrients during post-exercise recovery. Nutrients. 2020;12:280.

    Article  CAS  PubMed Central  Google Scholar 

  13. Li Z, Wu F, Shao H, Zhang Y, Fan A, Li F. Does the fragrance of essential oils alleviate the fatigue induced by exercise? A biochemical indicator test in rats. Evid-Based Complement Alternat Med. 2017;2017:1–7.

    CAS  Google Scholar 

  14. Ament W, Verkerke GJ. Exercise and fatigue. Sports Med. 2009;39:389–422.

    Article  PubMed  Google Scholar 

  15. Ihsan M, Watson G, Abbiss CR. What are the physiological mechanisms for post-exercise cold water immersion in the recovery from prolonged endurance and intermittent exercise? Sports Med. 2016;46:1095–109.

    Article  PubMed  Google Scholar 

  16. Antti M. Leucine supplementation and intensive training. Sports Med. 1999;27(6):347–58.

    Article  Google Scholar 

  17. Reule CA, Scholz C, Schoen C, Brown N, Siepelmeyer A, Alt WW. Reduced muscular fatigue after a 12-week leucine-rich amino acid supplementation combined with moderate training in elderly: a randomised, placebo-controlled, double-blind trial. BMJ Open Sport Exerc Med. 2016;2:e000156.

    Article  PubMed  Google Scholar 

  18. Kobayashi H. amino acid nutrition in the prevention and treatment of sarcopenia. Yakugaku Zasshi. 2018;138:1277–83.

    Article  CAS  PubMed  Google Scholar 

  19. Ren G, Yi S, Zhang H, Wang J. Ingestion of soy-whey blended protein augments sports performance and ameliorates exercise-induced fatigue in a rat exercise model. Food Funct. 2017;8:670–9.

    Article  CAS  PubMed  Google Scholar 

  20. Okamura K, Matsubara F, Yoshioka Y, Kikuchi N, Kikuchi Y, Kohri H. Exercise-induced changes in branched chain amino acid/aromatic amino acid ratio in the rat brain and plasma. Jpn J Pharmacol. 1987;45:243–8.

    Article  CAS  PubMed  Google Scholar 

  21. Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab. 2006;291:E381-387.

    Article  CAS  PubMed  Google Scholar 

  22. Jager R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, Purpura M, Ziegenfuss TN, Ferrando AA, Arent SM, Smith-Ryan AE, Stout JR, Arciero PJ, Ormsbee MJ, Taylor LW, Wilborn CD, Kalman DS, Kreider RB, Willoughby DS, Hoffman JR, Krzykowski JL, Antonio J. International society of sports nutrition position stand: protein and exercise. J Int Soc Sports Nutr. 2017;14:20.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tsuda Y, Yamaguchi M, Noma T, Okaya E, Itoh H. Combined effect of arginine, valine, and serine on exercise-induced fatigue in healthy volunteers: a randomized, double-blinded, placebo-controlled crossover study. Nutrients. 2019;11(4):862.

  24. Wong CY, Al-Salami H, Dass CR. Microparticles, microcapsules and microspheres: a review of recent developments and prospects for oral delivery of insulin. Int J Pharm. 2018;537:223–44.

    Article  CAS  PubMed  Google Scholar 

  25. Chi A, Li H, Kang C, Guo H, Wang Y, Guo F, Tang L. Anti-fatigue activity of a novel polysaccharide conjugates from Ziyang green tea. Int J Biol Macromol. 2015;80:566–72.

    Article  CAS  PubMed  Google Scholar 

  26. Wen J, Xu B, Sun Y, Lian M, Li Y, Lin Y, Chen D, Diao Y, Almoiliqy M, Wang L. Paeoniflorin protects against intestinal ischemia/reperfusion by activating LKB1/AMPK and promoting autophagy. Pharmacol Res. 2019;146:104308.

    Article  CAS  PubMed  Google Scholar 

  27. Shimomura Y, Murakami T, Nakai N, Nagasaki M, Harris RA. Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. J Nutr. 2004;134:1583S-1587S.

    Article  CAS  PubMed  Google Scholar 

  28. Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol. 2004;287:R502-516.

    Article  CAS  PubMed  Google Scholar 

  29. Shan F, Yang T, Li J, Huang QY. Assessment of fatigue-related biochemical alterations in a rat swimming model under hypoxia. J Exp Biol. 2019;222.

  30. Saovieng S, Wu J, Huang CY, Kao CL, Higgins MF, Chuanchaiyakul R, Kuo CH. Deep ocean minerals minimize eccentric exercise-induced inflammatory response of rat skeletal muscle. Front Physiol. 2018;9:1351.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gonzalez J, Fuchs C, Betts J, van Loon L. Glucose plus fructose ingestion for post-exercise recovery—greater than the sum of its parts? Nutrients. 2017;9:344.

    Article  PubMed Central  Google Scholar 

  32. Katsanos CS, Chinkes DL, Paddon-Jones D, Zhang XJ, Aarsland A, Wolfe RR. Whey protein ingestion in elderly persons results in greater muscle protein accrual than ingestion of its constituent essential amino acid content. Nutr Res. 2008;28:651–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ammar A, Bailey SJ, Chtourou H, Trabelsi K, Turki M, Hokelmann A, Souissi N. Effects of pomegranate supplementation on exercise performance and post-exercise recovery in healthy adults: a systematic review. Br J Nutr. 2018;120:1201–16.

    Article  CAS  PubMed  Google Scholar 

  34. Myburgh KH. Polyphenol supplementation: benefits for exercise performance or oxidative stress? Sports Med. 2014;44(Suppl 1):S57-70.

    Article  PubMed  Google Scholar 

  35. Wang XJ, Yang X, Wang RX, Jiao HC, Zhao JP, Song ZG, Lin H. Leucine alleviates dexamethasone-induced suppression of muscle protein synthesis via synergy involvement of mTOR and AMPK pathways. Biosci Rep. 2016;36.

  36. Blomstrand E, Hassmen P, Ekblom B, Newsholme EA. Administration of branched-chain amino acids during sustained exercise–effects on performance and on plasma concentration of some amino acids. Eur J Appl Physiol Occup Physiol. 1991;63:83–8.

    Article  CAS  PubMed  Google Scholar 

  37. VanDusseldorp TA, Escobar KA, Johnson KE, Stratton MT, Moriarty T, Cole N, McCormick JJ, Kerksick CM, Vaughan RA, Dokladny K, Kravitz L, Mermier CM. Effect of branched-chain amino acid supplementation on recovery following acute eccentric exercise. Nutrients. 2018;10(10):1389.

    Article  PubMed Central  Google Scholar 

  38. Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids. 2009;37:1–17.

    Article  PubMed  Google Scholar 

  39. Biolo G, Tipton KD, Klein S, Wolfe RR. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol. 1997;273:E122-129.

    CAS  PubMed  Google Scholar 

  40. Kato H, Suzuki H, Mimura M, Inoue Y, Sugita M, Suzuki K, Kobayashi H. Leucine-enriched essential amino acids attenuate muscle soreness and improve muscle protein synthesis after eccentric contractions in rats. Amino Acids. 2015;47:1193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wolfe RR. Branched-chain amino acids and muscle protein synthesis in humans: myth or reality? J Int Soc Sports Nutr. 2017;14:30.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Phillips SM. A brief review of critical processes in exercise-induced muscular hypertrophy. Sports Med. 2014;44(Suppl 1):S71-77.

    Article  PubMed  Google Scholar 

  43. Nowosad A, Jeannot P, Callot C, Creff J, Perchey RT, Joffre C, Codogno P, Manenti S, Besson A. P27 controls ragulator and mTOR activity in amino acid-deprived cells to regulate the autophagy-lysosomal pathway and coordinate cell cycle and cell growth. Nat Cell Biol. 2020;22:1076–90.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang M, Liu F, Zhou P, Wang Q, Xu C, Li Y, Bian L, Liu Y, Zhou J, Wang F, Yao Y, Fang Y, Li D. The mTOR signaling pathway regulates macrophage differentiation from mouse myeloid progenitors by inhibiting autophagy. Autophagy. 2019;15:1150–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang N, Perl A. Metabolism as a target for modulation in autoimmune diseases. Trends Immunol. 2018;39:562–76.

    Article  CAS  PubMed  Google Scholar 

  46. Hafen E. Interplay between growth factor and nutrient signaling: lessons from drosophila tor. Curr Top Microbiol Immunol. 2004;279:153–67.

    CAS  PubMed  Google Scholar 

  47. Wang M, Mou Y, Da Y, Yuan X, Yan F, Lan W, Zhang F. Effects of mammalian target of rapamycin on proliferation, apoptosis and differentiation of myoblasts undergoing mechanical stress. Am J Transl Res. 2018;10:4173–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Park IH, Chen J. Mammalian target of rapamycin (mTOR) signaling is required for a late-stage fusion process during skeletal myotube maturation. J Biol Chem. 2005;280:32009–17.

    Article  CAS  PubMed  Google Scholar 

  49. Marabita M, Baraldo M, Solagna F, Ceelen JJM, Sartori R, Nolte H, Nemazanyy I, Pyronnet S, Kruger M, Pende M, Blaauw B. S6k1 is required for increasing skeletal muscle force during hypertrophy. Cell Rep. 2016;17:501–13.

    Article  CAS  PubMed  Google Scholar 

  50. Polotow TG, Vardaris CV, Mihaliuc AR, Goncalves MS, Pereira B, Ganini D, Barros MP. Astaxanthin supplementation delays physical exhaustion and prevents redox imbalances in plasma and soleus muscles of Wistar rats. Nutrients. 2014;6:5819–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu X, Ding Y, Yang Y, Gao Y, Sun Q, Liu J, Yang X, Wang J, Zhang J. Beta-glucan salecan improves exercise performance and displays anti-fatigue effects through regulating energy metabolism and oxidative stress in mice. Nutrients. 2018;10(7):858.

    Article  PubMed Central  Google Scholar 

  52. Riley MS, Nicholls DP, Cooper CB. Cardiopulmonary exercise testing and metabolic myopathies. Ann Am Thorac Soc. 2017;14:S129–39.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to INNOBIO® Co., Inc. for providing the supplements used in this study.

Funding

This work was supported by grants from the Liaoning Revitalization Talents Program (XLYC1803019).

Author information

Authors and Affiliations

Authors

Contributions

WW, JW, and CF conceived the study. JW, CF, CS, CW, KL, and WW designed experiments. WW, CF, CW, and KL performed all animal experiments and data analysis. ML, QL, CS, and XW prepared the supplements in this research. JW and CF wrote the manuscript. WW and KL supervised the work and revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Kexin Liu or Wenzhong Wu.

Ethics declarations

Ethics approval

This research was conducted according to animal guidelines from Dalian Medical University which were in agreement with ethical committee of Dalian Medical University, (Permit No. SCXK (Liao) 2015–2003). All the experimental protocol was strictly conducted in conformity with the National Institutes of Health Guide for Care and Use of Laboratory Animals (Publication no. 85–23, revised 1985), and Dalian Medical University Animal Care and Ethics Committee.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(PNG 101 kb)

High resolution image (TIF 7803 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, J., Fan, C., Liu, M. et al. Leucine‑enriched essential amino acids promote muscle protein synthesis and ameliorate exercise-induced exhaustion in prolonged endurance exercise in rats. Nutrire 47, 7 (2022). https://doi.org/10.1186/s41110-022-00158-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s41110-022-00158-8

Keywords

Navigation