1 Introduction

In this paper, we are concerned with a class of infinite-point boundary value problems of fractional differential equations on the infinite interval with a disturbance parameter λ as follows:

$$ \textstyle\begin{cases} D_{0^{+}}^{\delta}u(t)+q(t)f(t,u(t))=0,\quad t\in(0,+\infty), \\ u(0)= D_{0^{+}}^{\delta-1}u(+\infty)=0, \\ D_{0^{+}}^{\delta-2}u(0) =\sum_{i=1}^{\infty}g(\xi_{i})D_{0^{+}}^{\delta-1}u(\xi_{i})+\lambda, \end{cases} $$
(1.1)

where \(D_{0^{+}}^{\delta}\) is the standard Riemann-Liouville fractional derivative, \(2<\delta<3\). \(0<\xi_{1}<\xi_{2}<\cdots<\xi_{i}<\cdots<+\infty\), \(i=1,2,\ldots \) , \(g(\xi_{i})\geq0\) and \(\sum_{i=1}^{\infty}g(\xi_{i})\) is convergent. \(\mathbb{R}^{+}=[0,+\infty)\), \(f: \mathbb{R}^{+}\times \mathbb{R}^{+} \rightarrow\mathbb{R}^{+}\) is an \(L^{1}\)-Carathéodory function, the disturbance parameter \(\lambda\in\mathbb {R}^{+}\). \(D_{0^{+}}^{\delta-1}u(+\infty):=\lim_{t\rightarrow+\infty }D_{0^{+}}^{\delta-1}u(t)\) exists.

In recent years, the theory of fractional differential equations has been widely used in various fields, such as physics, mechanics, chemistry, engineering, etc., see [14]. Meanwhile, the study of boundary value problems of fractional differential equations has gained plenty of meaningful results and has been growing rapidly, see [520].

In [14], the authors studied the existence and nonexistence of the positive solutions for the fractional differential equation with two disturbance parameters

$$ \textstyle\begin{cases} D_{0^{+}}^{\delta}u(t)+f(t,u(t))=0, \quad t\in(0,1), \\ \lim_{t\rightarrow0^{+}}t^{2-\delta}u(t)=a,\qquad u(1)=b, \end{cases} $$

where \(1<\delta<2\), disturbance parameters \(a\geq0\), \(b\geq0\). Under certain conditions, the authors studied the impact of the disturbance parameters a and b on the existence of positive solutions.

As an important part of fractional differential equations, the boundary value problems on infinite intervals have also been extensively researched, see [2127]. In [21], Liang and Zhang studied the following m-point boundary value problem of fractional differential equations on the infinite interval:

$$ \textstyle\begin{cases} D_{0^{+}}^{\delta}u(t)+a(t)f(u(t))=0,\quad t\in(0,+\infty), \\ u(0)=u'(0)=0,\qquad D_{0^{+}}^{\delta-1}u(+\infty)=\sum_{i=1}^{m-2}\gamma _{i}u(\xi_{i}), \end{cases} $$

where \(2<\delta\leq3\), \(0<\xi_{1}<\xi_{2}<\cdots<\xi_{m-2}<+\infty\), \(\gamma _{i}\geq0\), \(i=1,2,\ldots,m-2\) and \(\sum_{i=1}^{m-2}\gamma_{i}\xi_{i}^{\delta -1}<\Gamma(\delta)\). By using the Leggett-Williams fixed point theorem, the existence of three positive solutions for the boundary value problem on the infinite interval was obtained.

In [23], authors investigated the integral boundary value problem of fractional differential equations on infinite intervals with two disturbance parameters

$$ \textstyle\begin{cases} D_{0{+}}^{\delta}u(t)+f(t,u(t),D_{0{+}}^{\delta-1}u(t))=0,\quad t\in (0,+\infty), \\ u(0)= 0, \\ D_{0{+}}^{\delta-1}u(\infty)=\int_{0}^{\tau}g_{1}(s)u(s)\, \mathrm{d}s+a, \\ D_{0{+}}^{\delta-2}u(0) =\int_{0}^{\tau}g_{2}(s)u(s)\, \mathrm{d}s+b, \end{cases} $$

where \(2<\delta\leq3\), f satisfies the \(L^{1}\)-Caratheódory conditions, \(g_{1},g_{2}\in L^{1}([0,+\infty))\) are nonnegative, disturbance parameters \(a,b\in[0,+\infty)\).

The purpose of this paper is to investigate the existence of positive solutions for the infinite-point boundary value problem of fractional differential equations on the half-line (1.1). Moreover, the impact of the disturbance parameters on the existence and nonexistence of positive solutions is established. Finally, some examples are presented to illustrate the main results.

2 Preliminaries

For the convenience of the readers, we present here some basic definitions and lemmas, which are used throughout this paper.

The function \(f:\mathbb{R}^{+}\times\mathbb{R}^{+}\rightarrow\mathbb {R}\) is called an \(L^{1}\)-Carathéodory function if

  1. (1)

    for each \(u\in\mathbb{R}^{+}\), \(t\mapsto f(t,u)\) is measurable on \(t\in\mathbb{R}^{+}\);

  2. (2)

    for a.e. \(t\in\mathbb{R}^{+}\), \(u\mapsto f(t,u)\) is continuous on \(u\in\mathbb{R}^{+}\);

  3. (3)

    for each \(r>0\), there exists \(\varphi_{r}\in L^{1}(\mathbb{R}^{+})\) with \(\varphi_{r}(t)\geq0\) on \(t\in\mathbb{R}^{+}\) such that

    $$\bigl\vert f\bigl(t,\bigl(1+t^{\delta-1}\bigr)u\bigr) \bigr\vert \leq \varphi_{r}(t), \quad \mbox{for all } \vert u \vert \leq r, \mbox{and a.e. } t\in\mathbb{R}^{+}. $$

Throughout this paper, we always assume that the following hypotheses hold:

  1. (H1)

    \(q\in L^{1}(\mathbb{R}^{+})\) is nonnegative and \(\int_{0}^{+\infty }q(s)\varphi_{r}(s)\, \mathrm{d}s<+\infty\) for any \(r>0\);

  2. (H2)

    \(f(t,u)\) is monotone increasing with respect to \(u\in\mathbb {R}^{+}\) for each \(t\in\mathbb{R}^{+}\).

Definition 2.1

see [1]

Let \(p>0\). The Riemann-Liouville fractional integral of order p of a function \(u:\mathbb{R}^{+}\rightarrow \mathbb{R}\) is given by

$$I_{0^{+}}^{p}u(t)=\frac{1}{\Gamma(p)} \int_{0}^{t}(t-s)^{p-1}u(s)\, \mathrm{d}s, $$

provided the integral exists.

Definition 2.2

see [1]

Let \(p >0\). The Riemann-Liouville fractional derivative of order p of a function \(u:\mathbb{R}^{+}\rightarrow\mathbb{R}\) is given by

$$D_{0^{+}}^{p}u(t)=D^{n}I_{0^{+}}^{n-p}u(t) =\frac{1}{\Gamma(n-p)} \biggl(\frac{\mathrm{d}}{\mathrm{d}t} \biggr)^{n} \int_{0}^{t}\frac{u(s)}{(t-s)^{p-n+1}}\, \mathrm{d}s, $$

where n is the smallest integer greater than or equal to p, provided the right-hand side is pointwise defined on \(\mathbb{R}^{+}\).

Denote

$$E=\biggl\{ u\in C\bigl(\mathbb{R}^{+}\bigr): \sup_{t\in\mathbb{R}^{+}}{ \frac {|u(t)|}{1+t^{\delta-1}}}< +\infty\biggr\} , $$

endowed with the norm \(\|u\|=\sup_{t\in{\mathbb{R}^{+}}}{\frac {|u(t)|}{1+t^{\delta-1}}}\), then E is a Banach space.

Definition 2.3

We say that \(u=u(t)\) is a solution of boundary value problem (1.1), if \(u\in E\), \(D_{0^{+}}^{\delta }u\in L^{1}(\mathbb{R}^{+})\) and satisfies (1.1). Moreover, if \(u(t)\geq0 \), \(t\in\mathbb{R}^{+}\), we say that u is a positive solution of boundary value problem (1.1).

Lemma 2.1

Suppose \(h\in L^{1}(\mathbb{R}^{+})\) and \(2<\delta<3\), then the following boundary value problem

$$ \textstyle\begin{cases} D_{0^{+}}^{\delta}u(t)+h(t)=0,\quad t\in(0,+\infty), \\ u(0)= D_{0^{+}}^{\delta-1}u(+\infty)=0, \\ D_{0^{+}}^{\delta-2} u(0) =\sum_{i=1}^{\infty}g(\xi _{i})D_{0^{+}}^{\delta-1}u(\xi_{i})+\lambda \end{cases} $$
(2.1)

has a unique solution

$$ u(t)= \int_{0}^{+\infty}G(t,s)h(s)\, \mathrm{d}s+ \frac{\lambda t^{\delta -2}}{\Gamma(\delta-1)}, $$
(2.2)

where

$$\begin{aligned}& G(t,s)=G_{1}(t,s)+G_{2}(t,s), \end{aligned}$$
(2.3)
$$\begin{aligned}& G_{1}(t,s)=\frac{1}{\Gamma(\delta)} \textstyle\begin{cases} t^{\mathrm{\delta-1}}-(t-s)^{\mathrm{\delta-1}}, &0\leq s\leq t< +\infty ,\\ t^{\mathrm{\delta-1}},& 0\leq t< s< +\infty, \end{cases}\displaystyle \end{aligned}$$
(2.4)
$$\begin{aligned}& G_{2}(t,s)=\frac{1}{\Gamma(\delta-1)} \sum _{i=1}^{\infty}g(\xi_{i})\chi( \xi_{i},s) t^{\delta-2}, \end{aligned}$$
(2.5)

and the characteristic function χ is defined by

$$ \chi(\xi_{i},s)= \textstyle\begin{cases} 1,& s\geq\xi_{i}, \\ 0,& s< \xi_{i}, \end{cases}\displaystyle \quad i=1,2,\ldots. $$

Proof

Since \(D_{0{+}}^{\delta}u(t)+h(t)=0\), we have

$$ u(t)=-\frac{1}{\Gamma(\delta)} \int_{0}^{t}(t-s)^{\mathrm{\delta-1}}h(s)\, \mathrm{d}s+c_{1}t^{\mathrm{\delta-1}} +c_{2}t^{\mathrm{\delta-2}}+c_{3}t^{\mathrm{\delta-3}}, $$
(2.6)

where \(c_{i}\in\mathbb{R}\), \(i=1,2,3\).

Since \(u(0)=0\), then \(c_{3}=0\) and

$$D_{0^{+}}^{\delta-1}u(t)=- \int_{0}^{t} h(s)\, \mathrm{d}s+c_{1} \Gamma(\delta),\qquad D_{0^{+}}^{\delta-2}u(t)=- \int_{0}^{t} (t-s)h(s)\, \mathrm{d}s+c_{1} \Gamma (\delta)t+c_{2}\Gamma(\delta-1). $$

By the boundary conditions, we can get

$$ \textstyle\begin{cases} -\int_{0}^{+\infty}h(s)\, \mathrm{d}s+c_{1}\Gamma(\delta)=0, \\ c_{2}\Gamma(\delta-1)=\sum_{i=1}^{\infty}g(\xi_{i}) \int_{\xi_{i}}^{+\infty}h(s)\, \mathrm{d}s+\lambda, \end{cases} $$

and \(c_{1}=\frac{1}{\Gamma(\delta)}\int_{0}^{+\infty}h(s)\, \mathrm{d}s\), \(c_{2}=\frac{1}{\Gamma(\delta-1)}\sum_{i=1}^{\infty}g(\xi_{i}) \int_{\xi_{i}}^{+\infty}h(s)\, \mathrm{d}s +\frac{\lambda}{\Gamma(\delta-1)}\).

So

$$\begin{aligned} u(t) =&-\frac{1}{\Gamma(\delta)} \int_{0}^{t}(t-s)^{{\delta -1}}h(s)\,\mathrm{d}s + \frac{1}{\Gamma(\delta)} \int_{0}^{+\infty}t^{\delta-1} h(s)\,\mathrm{d}s \\ &{}+\frac{t^{\delta-2}}{\Gamma(\delta-1)} \sum_{i=1}^{\infty}g( \xi_{i}) \int_{\xi_{i}}^{+\infty}h(s)\,\mathrm{d}s +\frac{\lambda t^{\delta-2}}{\Gamma(\delta-1)} \\ =& \int_{0}^{+\infty}G_{1}(t,s)h(s)\,\mathrm{d}s + \frac{\sum_{i=1}^{\infty}g(\xi_{i})t^{\delta-2}}{ \Gamma(\delta-1)} \int_{0}^{+\infty}\chi(\xi_{i},s)h(s)\, \mathrm{d}s+\frac {\lambda t^{\delta-2}}{\Gamma(\delta-1)} \\ =& \int_{0}^{+\infty}G_{1}(t,s)h(s)\,\mathrm{d}s + \int_{0}^{+\infty}G_{2}(t,s)h(s)\,\mathrm{d}s+ \frac{\lambda t^{\delta -2}}{\Gamma(\delta-1)} \\ =& \int_{0}^{+\infty}G(t,s)h(s)\,\mathrm{d}s+ \frac{\lambda t^{ \delta -2}}{\Gamma(\delta-1)}. \end{aligned}$$

On the other hand, if u satisfies (2.2), we can easily show that u satisfies (2.1) and \(D_{0^{+}}^{\delta}u\in L^{1}(\mathbb{R}^{+})\).

The proof is completed. □

Lemma 2.2

Let \(G(t,s)\), \(G_{1}(t,s)\) defined by (2.3) and (2.4) satisfy the following properties:

  1. (1)

    \(G(t,s),G_{1}(t,s)\geq0\) for any \((t,s)\in\mathbb{R}^{+}\times \mathbb{R}^{+}\);

  2. (2)

    \(G_{1}(t,s)\) and \(\frac{G_{1}(t,s)}{1+t^{\delta-1}}\) are continuous on \((t,s)\in\mathbb{R}^{+}\times\mathbb{R}^{+}\);

  3. (3)

    \(0\leq\frac{G(t,s)}{1+t^{\delta-1}}\leq\frac{L}{\Gamma(\delta)}\) for any \(t,s\in\mathbb{R}^{+}\), where the constant \(L=1+(\delta-1)\sum_{i=1}^{\infty}g(\xi_{i})\);

  4. (4)

    for a constant \(k>1\), we have

    $$\min_{\frac{1}{k}\leq t \leq k}\frac{G_{1}(t,s)}{1+t^{\delta-1}} \geq\frac{1}{4k^{2}(1+k^{\delta-1})}\sup _{t\in\mathbb{R}^{+}}{\frac {G_{1}(t,s)}{1+t^{\delta-1}}} $$

    and

    $$\min_{\frac{1}{k}\leq t \leq k}\frac{G(t,s)}{1+t^{\delta-1}}\geq\frac {1}{4k^{2}(1+k^{\delta-1})}\sup _{t\in\mathbb{R}^{+}}{\frac {G(t,s)}{1+t^{\delta-1}}}. $$

Proof

By (2.4) and (2.5), the definitions of \(G(t,s)\) and \(G_{1}(t,s)\), the results (1) and (2) can be easily obtained.

(3) According to the definition of \(G(t,s)\), we have

$$\frac{G(t,s)}{1+t^{\delta-1}}= \frac{G_{1}(t,s)}{1+t^{\delta-1}} +\frac{G_{2}(t,s)}{1+t^{\delta-1}} \leq \frac{1}{\Gamma(\delta)}+\frac{1}{\Gamma(\delta-1)} \sum_{i=1}^{\infty}g( \xi_{i}) =\frac{L}{\Gamma(\delta)}. $$

(4) The first inequality can be found in [21].

We can easily show that \(\min_{\frac{1}{k}\leq t \leq k}\{\frac {t^{{\delta-2}}}{1+t^{{\delta-1}}}\} =\frac{k^{{\delta-2}}}{1+k^{{\delta-1}}}\) for \(k>1\). Thus

$$\begin{aligned} \min_{\frac{1}{k}\leq t \leq k}\frac{G_{2}(t,s)}{1+t^{\delta-1}} &=\frac{1}{\Gamma(\delta-1)}\sum _{i=1}^{\infty}g(\xi_{i})\chi( \xi_{i},s) \min_{\frac{1}{k}\leq t \leq k} \frac{t^{{\delta -2}}}{1+t^{{\delta-1}}} \\ &=\frac{1}{\Gamma(\delta-1)}\sum_{i=1}^{\infty}g( \xi_{i})\chi(\xi_{i},s) \frac{k^{{\delta-2}}}{1+k^{{\delta-1}}} \\ &>\frac{1}{\Gamma(\delta-1)}\sum_{i=1}^{\infty} g( \xi_{i})\chi(\xi_{i},s)\frac{1}{1+k^{{\delta-1}}} \\ &>\frac{1}{1+k^{{\delta-1}}} \frac{1}{\Gamma(\delta-1)}\sum_{i=1}^{\infty}g( \xi_{i}) \chi(\xi_{i},s)\sup_{t\in\mathbb{R}^{+}} \frac{t^{\delta-2}}{1+t^{\delta -1}} \\ &=\frac{1}{1+k^{{\delta-1}}}\sup_{t\in\mathbb{R}^{+}}\frac {G_{2}(t,s)}{1+t^{\delta-1}}. \end{aligned}$$

So

$$\begin{aligned} \min_{\frac{1}{k}\leq t \leq k}\frac{G(t,s)}{1+t^{\delta-1}} &\geq\min_{\frac{1}{k}\leq t \leq k} \frac{G_{1}(t,s)}{1+t^{\delta -1}}+\min_{\frac{1}{k}\leq t \leq k}\frac{G_{2}(t,s)}{1+t^{\delta-1}} \\ &\geq\frac{1}{4k^{2}(1+k^{\delta-1})}\sup_{t\in\mathbb{R}^{+}}{\frac {G_{1}(t,s)}{1+t^{\delta-1}}} + \frac{1}{1+k^{{\delta-1}}}\sup_{t\in\mathbb{R}^{+}}\frac {G_{2}(t,s)}{1+t^{\delta-1}} \\ &\geq\frac{1}{4k^{2}(1+k^{\delta-1})}\sup_{t\in\mathbb{R}^{+}}{\frac {G(t,s)}{1+t^{\delta-1}}}. \end{aligned}$$

 □

Let

$$P=\bigl\{ u\in E: u(t)\geq0, t\in\mathbb{R}^{+}\bigr\} . $$

Then \(P\subset E\) is a cone.

For \(u\in P\), let

$$(Tu) (t)= \int_{0}^{+\infty}G(t,s)q(s)f\bigl(s,u(s)\bigr)\, \mathrm{d}s+\frac{\lambda t^{\delta-2}}{\Gamma(\delta-1)}. $$

Then \(T:P\rightarrow E\).

Lemma 2.3

see [24]

Let \(V =\{u\in E:\|u\|\leq l\}\), \(l>0\), \(V_{1}=\{v=\frac{u}{1+t^{\delta -1}}:u\in V\}\). If \(V_{1}\) is equicontinuous on any compact interval of \(\mathbb{R}^{+}\) and equiconvergent at infinity, then V is relatively compact on E.

Lemma 2.4

Assume (H1) holds, then \(T:P\rightarrow P\) is completely continuous.

Proof

For \(u\in P\subset E\), since \(\sup_{t\in\mathbb{R}^{+}}\frac {u(t)}{1+t^{\delta-1}}<+\infty\), there exists a constant \(l>0\) such that \(\|u\|\leq l\). Then \(\frac{Tu(t)}{1+t^{\delta-1}} <\frac{L}{\Gamma(\delta)}\int_{0}^{+\infty}q(s){\varphi}_{l}(s)\,\mathrm{d}s +\frac{\lambda}{\Gamma(\delta-1)}<+\infty\), and \(Tu(t)\) is continuous with respect to \(t\in\mathbb{R}^{+}\). So \(Tu\in E\) and \(T: P\rightarrow E\) is well defined. Since G, f, q are nonnegative, then \(Tu(t)\geq0\), which implies \(Tu\in P\) for any \(u\in P\).

(i) Let \(\{u_{n}\}\subset P\), \(u\in P\) such that \(\|u_{n}-u\|\rightarrow0\) as \(n\rightarrow+\infty\), that is, \(\frac{u_{n}(t)}{1+t^{\delta -1}}\rightarrow\frac{u(t)}{1+t^{\delta-1}}\). Then there exists a constant \(r>0\) such that \(\|u_{n}\|\leq r\), \(\|u\|\leq r\). Since f satisfies the \(L^{1}\)-Carathéodory conditions for a.e. \(s\in\mathbb {R}^{+}\), then

$$\bigl\vert f\bigl(s,u_{n}(s)\bigr)-f\bigl(s,u(s)\bigr) \bigr\vert \rightarrow0,\quad \mbox{as } n\rightarrow+\infty, $$

and

$$\bigl\vert f\bigl(s,u_{n}(s)\bigr)-f\bigl(s,u(s)\bigr) \bigr\vert = \biggl\vert f\biggl(s,\bigl(1+s^{\delta-1}\bigr)\frac{u_{n}(s)}{1+s^{\delta-1}}\biggr) -f\biggl(s,\bigl(1+s^{\delta-1}\bigr)\frac{u(s)}{1+s^{\delta-1}}\biggr) \biggr\vert \leq2\varphi_{r}(s). $$

By the Lebesgue dominated convergence theorem,

$$\int_{0}^{+\infty}q(s)\bigl|f\bigl(s,u_{n}(s) \bigr)-f\bigl(s,u(s)\bigr)\bigr|\,\mathrm{d}s\rightarrow0,\quad \mbox{as } n \rightarrow+\infty. $$

Therefore,

$$\begin{aligned} \frac{ \vert Tu_{n}(t)-Tu(t) \vert }{1+t^{{\delta-1}}} =& \biggl\vert \int_{0}^{+\infty}\frac{G(t,s)}{1+t^{{\delta-1}}}q(s) \bigl(f \bigl(s,u_{n}(s)\bigr)-f\bigl(s,u(s)\bigr) \bigr)\,\mathrm{d}s \biggr\vert \\ \leq& \int_{0}^{+\infty}\frac{G(t,s)}{1+t^{{\delta-1}}}q(s) \bigl\vert f \bigl(s,u_{n}(s)\bigr) -f\bigl(s,u(s)\bigr) \bigr\vert \,\mathrm{d}s \\ \leq&\frac{L}{\Gamma(\delta)} \int_{0}^{+\infty}q(s) \bigl\vert f\bigl(s,u_{n}(s) \bigr)-f\bigl(s,u(s)\bigr) \bigr\vert \,\mathrm{d}s\rightarrow0, \quad \mbox{as } n\rightarrow+\infty. \end{aligned}$$

Hence, \(\|Tu_{n}-Tu\|\rightarrow0\) as \(n\rightarrow+\infty\), which implies that T is a continuous operator.

Let \(B\subset P\) be a nonempty bounded closed subset. There exists a constant \(l_{B}>0\) such that \(\|u\|\leq l_{B}\) for all \(u\in B\), and there exists \(\varphi_{l_{B}}\in L^{1}(\mathbb{R}^{+})\) such that

$$f\bigl(s,u(s)\bigr)=f\biggl(s,\bigl(1+s^{\delta-1}\bigr)\frac{u(s)}{1+s^{\delta-1}} \biggr)\leq{\varphi }_{l_{B}}(s). $$

For any \(u\in B\),

$$\begin{aligned} \biggl\vert \frac{Tu(t)}{1+t^{\delta-1}} \biggr\vert =& \biggl\vert \int_{0}^{+\infty}\frac{G(t,s)}{1+t^{{\delta -1}}}q(s)f\bigl(s,u(s) \bigr)\,\mathrm{d}s +\frac{\lambda}{\Gamma(\delta-1)}\frac{t^{\delta-2}}{1+t^{{\delta -1}}} \biggr\vert \\ \leq&\frac{L}{\Gamma(\delta)} \int_{0}^{+\infty}q(s){\varphi }_{l_{B}}(s)\, \mathrm{d}s +\frac{\lambda}{\Gamma(\delta-1)}< +\infty. \end{aligned}$$

So, \(\|Tu\|<+\infty\). Then \(T(B)\) is bounded and T is uniformly bounded.

(ii) For any \(T_{0}>0\), let \(I=[0,T_{0}]\) be a compact interval. Because \(\frac{G_{1}(t,s)}{1+t^{{\delta-1}}}\) is continuous for \((t,s)\in I\times I\), \(\frac{t^{\delta-1}}{1+t^{\delta-1}}\), \(\frac{t^{\delta -2}}{1+t^{\delta-1}}\) are continuous for \(t\in I\), then they are uniformly continuous. So, for any \(\varepsilon>0\), there exists a constant \(0<\delta_{1}<\varepsilon\) such that

$$\begin{aligned}& \biggl\vert \frac{G_{1}(t_{1},s_{1})}{1+t_{1}^{{\delta-1}}} -\frac{G_{1}(t_{2},s_{2})}{1+t_{2}^{{\delta-1}}} \biggr\vert < \frac{\varepsilon}{\Gamma(\delta)}, \\& \biggl\vert \frac{t_{1}^{\delta-1}}{1+t_{1}^{\delta-1}} -\frac{t_{2}^{\delta-1}}{1+t_{2}^{\delta-1}} \biggr\vert < \varepsilon,\qquad \biggl\vert \frac{t_{1}^{\delta-2}}{1+t_{1}^{\delta-1}} - \frac{t_{2}^{\delta-2}}{1+t_{2}^{\delta-1}} \biggr\vert < \varepsilon \end{aligned}$$

for all \(t_{1},t_{2},s_{1},s_{2}\in I\) and \(|t_{1}-t_{2}|<\delta_{1}\), \(|s_{1}-s_{2}|<\delta_{1}\).

From the definition of \(G_{1}(t,s)\), for \(s>t\),

$$ \biggl\vert \frac{G_{1}(t_{1},s)}{1+t_{1}^{{\delta-1}}} -\frac{G_{1}(t_{2},s)}{1+t_{2}^{{\delta-1}}} \biggr\vert \leq \frac{1}{\Gamma(\delta)} \biggl\vert \frac{t_{1}^{\delta-1}}{1+t_{1}^{\delta-1}} -\frac{t_{2}^{\delta-1}}{1+t_{2}^{\delta-1}} \biggr\vert < \frac{1}{\Gamma(\delta)}\varepsilon. $$

Similarly, we can get

$$ \biggl\vert \frac{G_{2}(t_{1},s)}{1+t_{1}^{{\delta-1}}} -\frac{G_{2}(t_{2},s)}{1+t_{2}^{{\delta-1}}} \biggr\vert \leq \frac{1}{\Gamma(\delta-1)}\sum_{i=1}^{\infty}g( \xi_{i}) \biggl\vert \frac{t_{1}^{\delta-2}}{1+t_{1}^{\delta-1}} -\frac{t_{2}^{\delta-2}}{1+t_{2}^{\delta-1}} \biggr\vert < \frac{\varepsilon}{\Gamma(\delta-1)}\sum_{i=1}^{\infty}g( \xi_{i}). $$

Then, for each \(u\in B\),

$$\begin{aligned}& \biggl\vert \frac{Tu(t_{1})}{1+t_{1}^{{\delta-1}}} -\frac{Tu(t_{2})}{1+t_{2}^{{\delta-1}}} \biggr\vert \\& \quad \leq \int_{0}^{+\infty} \biggl\vert \frac{G_{1}(t_{1},s)}{1+t_{1}^{{\delta-1}}} - \frac{G_{1}(t_{2},s)}{1+t_{2}^{{\delta-1}}} \biggr\vert q(s) \bigl\vert f\bigl(s,u(s)\bigr) \bigr\vert \,\mathrm{d}s \\& \qquad {}+ \int_{0}^{+\infty} \biggl\vert \frac{G_{2}(t_{1},s)}{1+t_{1}^{{\delta-1}}} - \frac{G_{2}(t_{2},s)}{1+t_{2}^{{\delta-1}}} \biggr\vert q(s) \bigl\vert f\bigl(s,u(s)\bigr) \bigr\vert \,\mathrm {d}s +\frac{\lambda}{\Gamma(\delta-1)} \biggl\vert \frac{t_{1}^{\delta -2}}{1+t_{1}^{\delta-1}} - \frac{t_{2}^{\delta-2}}{1+t_{2}^{\delta-1}} \biggr\vert \\& \quad \leq \int_{0}^{T_{0}} \biggl\vert \frac{G_{1}(t_{1},s)}{1+t_{1}^{{\delta-1}}} - \frac{G_{1}(t_{2},s)}{1+t_{2}^{{\delta-1}}} \biggr\vert q(s) \bigl\vert f\bigl(s,u(s)\bigr) \bigr\vert \,\mathrm{d}s \\& \qquad {}+ \int_{T_{0}}^{+\infty} \biggl\vert \frac{G_{1}(t_{1},s)}{1+t_{1}^{{\delta-1}}} - \frac{G_{1}(t_{2},s)}{1+t_{2}^{{\delta-1}}} \biggr\vert q(s) \bigl\vert f\bigl(s,u(s)\bigr) \bigr\vert \,\mathrm{d}s \\& \qquad {} +\frac{\varepsilon}{\Gamma(\delta-1)} \sum_{i=1}^{\infty}g( \xi_{i}) \int_{0}^{+\infty}q(s)f\bigl(s,u(s)\bigr)\,\mathrm{d}s + \frac{\lambda}{\Gamma(\delta-1)}\varepsilon \\& \quad \leq \frac{\varepsilon}{\Gamma(\delta)} \int_{0}^{T_{0}}q(s){\varphi}_{l_{B}}(s)\, \mathrm{d}s +\frac{\varepsilon}{\Gamma(\delta)} \int_{T_{0}}^{+\infty}q(s){\varphi}_{l_{B}}(s)\, \mathrm{d}s \\& \qquad {}+\frac{\varepsilon}{\Gamma(\delta-1)} \sum_{i=1}^{\infty}g( \xi_{i}) \int_{0}^{+\infty}q(s){\varphi}_{l_{B}}(s)\, \mathrm{d}s+\frac{\lambda}{\Gamma(\delta-1)}\varepsilon \\& \quad \leq \Biggl(\frac{1}{\Gamma(\delta)} \int_{0}^{+\infty}q(s){\varphi}_{l_{B}}(s)\, \mathrm{d}s +\frac{1}{\Gamma(\delta-1)} \sum_{i=1}^{\infty}g( \xi_{i}) \int_{0}^{+\infty}q(s){\varphi}_{l_{B}}(s)\, \mathrm{d}s +\frac{\lambda}{\Gamma(\delta-1)}\Biggr)\varepsilon \\& \quad = \biggl(\frac{L}{\Gamma(\delta)} \int_{0}^{+\infty}q(s){\varphi}_{l_{B}}(s)\, \mathrm{d}s +\frac{\lambda}{\Gamma(\delta-1)}\biggr)\varepsilon. \end{aligned}$$

Therefore, \(\frac{Tu(t)}{1+t^{\delta-1}}\) is equicontinuous on I.

(iii) We prove that \(T: P\rightarrow P\) is equiconvergent at \(t=+\infty\). Since \(\lim_{t\rightarrow+\infty}\frac{t^{\delta-1}}{1+t^{\delta-1}}=1\) and \(\lim_{t\rightarrow+\infty}\frac{t^{\delta-2}}{1+t^{\delta-1}}=0\), then \(\lim_{t\rightarrow+\infty} \frac{G_{1}(t,s)}{1+t^{\delta-1}}=0\) and \(\lim_{t\rightarrow+\infty}\frac{G_{2}(t,s)}{1+t^{\delta-1}}=0\). Therefore \(\lim_{t\rightarrow+\infty}\frac{G(t,s)}{1+t^{\delta-1}}=0\).

For any \(u\in B\), we have

$$\int_{0}^{+\infty}q(s)f\bigl(s,u(s)\bigr)\,\mathrm{d}s \leq \int_{0}^{+\infty}q(s){\varphi}_{l_{B}}(s)\, \mathrm{d}s< +\infty $$

and

$$ \lim_{t\rightarrow+\infty} \biggl\vert \frac{Tu(t)}{1+t^{\delta-1}} \biggr\vert = \lim_{t\rightarrow+\infty} \biggl\vert \int_{0}^{+\infty} \frac{G(t,s)}{1+t^{{\delta-1}}}q(s)f\bigl(s,u(s) \bigr)\,\mathrm{d}s +\frac{\lambda}{\Gamma(\delta-1)}\frac{t^{\delta-2}}{1+t^{\delta-1}} \biggr\vert =0< + \infty. $$

Hence, \(T(B)\) is equiconvergent at infinity. Consequently, in view of Lemma 2.3, \(T(B)\) is relatively compact, thus T is a compact operator. So T is completely continuous and the proof is finished. □

Lemma 2.5

If boundary value problem (1.1) has a positive solution u, then for \(t\in\mathbb{R}^{+}\),

$$\min_{\frac{1}{k}\leq t \leq k}\frac{u(t)}{1+t^{\delta-1}}\geq\frac {1}{4k^{2}(1+k^{\delta-1})}\|u\|. $$

Proof

By Lemma 2.1, we have

$$u(t)= \int_{0}^{+\infty}G(t,s)q(s)f\bigl(s,u(s)\bigr)\, \mathrm{d}s +\frac{\lambda}{\Gamma(\delta-1)}t^{\delta-2}. $$

Then, according to (4) of Lemma 2.2, for \(t\in\mathbb{R}^{+}\),

$$\begin{aligned} \min_{\frac{1}{k}\leq t \leq k}\frac{u(t)}{1+t^{\delta-1}} =&\min_{\frac{1}{k}\leq t \leq k} \biggl( \int_{0}^{+\infty}\frac {G(t,s)}{1+t^{\delta-1}}q(s)f\bigl(s,u(s) \bigr)\,\mathrm{d}s +\frac{\lambda}{\Gamma(\delta-1)}\frac{t^{\delta-2}}{1+t^{\delta-1}} \biggr) \\ \geq&\min_{\frac{1}{k}\leq t \leq k} \int_{0}^{+\infty}\frac {G(t,s)}{1+t^{\delta-1}}q(s)f\bigl(s,u(s) \bigr)\,\mathrm{d}s +\frac{\lambda}{\Gamma(\delta-1)}\min_{\frac{1}{k}\leq t \leq k} \frac {t^{\delta-2}}{1+t^{\delta-1}} \\ \geq&\frac{1}{4k^{2}(1+k^{\delta-1})} \int_{0}^{+\infty}\sup_{t\in\mathbb {R}^{+}} \frac{G(t,s)}{1+t^{\delta-1}}q(s)f\bigl(s,u(s)\bigr)\,\mathrm{d}s +\frac{\lambda}{\Gamma(\delta-1)} \frac{k^{\delta-2}}{1+k^{\delta-1}} \\ \geq&\frac{1}{4k^{2}(1+k^{\delta-1})}\sup_{t\in\mathbb{R}^{+}} \int _{0}^{+\infty}\frac{G(t,s)}{1+t^{\delta-1}}q(s)f\bigl(s,u(s) \bigr)\,\mathrm{d}s +\frac{\lambda}{\Gamma(\delta-1)}\frac{1}{1+k^{\delta-1}} \\ \geq&\frac{1}{4k^{2}(1+k^{\delta-1})}\sup_{t\in\mathbb{R}^{+}} \biggl( \int_{0}^{+\infty}\frac{G(t,s)}{1+t^{\delta-1}}q(s)f\bigl(s,u(s) \bigr)\,\mathrm{d}s +\frac{\lambda}{\Gamma(\delta-1)}\frac{t^{\delta-2}}{1+t^{\delta-1}} \biggr) \\ =&\frac{1}{4k^{2}(1+k^{\delta-1})}\|u\|. \end{aligned}$$

The proof is finished. □

By Lemma 2.1, we can easily show that the following lemma holds.

Lemma 2.6

Assume \(u\in E\), \(D_{0^{+}}^{\delta}u\in L^{1}(\mathbb{R}^{+})\). Then boundary value problem (1.1) has a positive solution if and only if the operator T has a fixed point in P.

Lemma 2.7

see [28]

Let P be a cone of the Banach space E, \(\Omega\subset E\) be a bounded open set and \(\theta\in\Omega\). Suppose \(T: P\cap\overline {\Omega}\rightarrow P\) is a completely continuous operator. If \(u\neq \mu Tu\) for any \(u\in P\cap\partial\Omega\) and \(\mu\in[0,1]\), then \(i(T,P\cap\Omega,P)=1\).

3 Comparison principle

Definition 3.1

Let \(\alpha\in E\), \(D_{0^{+}}^{\delta}\alpha\in L^{1}(\mathbb {R}^{+})\), we say that \(\alpha=\alpha(t)\) is a lower solution of boundary value problem (1.1) if α satisfies

$$ \textstyle\begin{cases} -D_{0^{+}}^{\delta}\alpha(t)\leq q(t)f(t,\alpha(t)), \quad t\in(0,+\infty ), \\ \alpha(0)= 0,\qquad D_{0^{+}}^{\delta-1}\alpha(+\infty)=0, \\ D_{0^{+}}^{\delta-2}\alpha(0) \leq\sum_{i=1}^{\infty}g(\xi _{i})D_{0^{+}}^{\delta-1}u(\xi_{i})+\lambda. \end{cases} $$

Let \(\beta\in E\), \(D_{0^{+}}^{\delta}\beta\in L^{1}(\mathbb{R}^{+})\), we say \(\beta=\beta(t)\) is an upper solution of boundary value problem (1.1) if β satisfies

$$ \textstyle\begin{cases} -D_{0^{+}}^{\delta}\beta(t)\geq q(t)f(t,\beta(t)), \quad t\in(0,+\infty), \\ \beta(0)= 0,\qquad D_{0^{+}}^{\delta-1}\beta(+\infty)=0, \\ D_{0^{+}}^{\delta -2}\beta(0) \geq\sum_{i=1}^{\infty}g(\xi_{i})D_{0^{+}}^{\delta-1}u(\xi _{i})+\lambda. \end{cases} $$

Lemma 3.1

If \(u\in E\), \(D_{0^{+}}^{\delta}u\in L^{1}(\mathbb{R}^{+})\) and satisfies

$$ \textstyle\begin{cases} D_{0^{+}}^{\delta}u(t)\leq0,\quad t\in(0,+\infty), \\ u(0)=D_{0^{+}}^{\delta-1}u(+\infty)=0,\qquad D_{0^{+}}^{\delta-2}u(0) \geq \sum_{i=1}^{\infty}g(\xi_{i})D_{0^{+}}^{\delta-1}u(\xi_{i}), \end{cases} $$

then \(u(t)\geq0\) for \(t\in\mathbb{R}^{+}\).

Proof

Let \(-D_{0^{+}}^{\delta}u(t)=y(t)\geq0\) for a.e. \(t\in\mathbb {R}^{+}\), and \(D_{0^{+}}^{\delta-2}u(0) =\sum_{i=1}^{\infty}g(\xi_{i})D_{0^{+}}^{\delta-1}u(\xi_{i})+\lambda\), then \(\lambda\geq0\).

According to Lemma 2.1, we know that the boundary value problem

$$ \textstyle\begin{cases} -D_{0^{+}}^{\delta}u(t)= y(t),\quad t\in(0,+\infty), \\ u(0)=D_{0^{+}}^{\delta-1}u(+\infty)=0, \\ D_{0^{+}}^{\delta-2}u(0) =\sum_{i=1}^{\infty}g(\xi_{i})D_{0^{+}}^{\delta-1}u(\xi_{i})+\lambda \end{cases} $$

has a unique solution

$$u(t)= \int_{0}^{+\infty}G(t,s)y(s)\,\mathrm{d}s + \frac{\lambda}{\Gamma(\delta-1)}t^{\delta-2}. $$

From Lemma 2.2, we can obtain that \(u(t)\geq0\) for \(t\in \mathbb{R}^{+}\). □

Theorem 3.2

Suppose (H1) and (H2) hold if boundary value problem (1.1) has a nonnegative lower solution α and an upper solution β satisfies \(\alpha(t)\leq\beta(t)\) for \(t\in\mathbb{R}^{+}\). Then boundary value problem (1.1) has at least one positive solution u that satisfies \(\alpha(t)\leq u(t)\leq\beta(t)\) for \(t\in\mathbb{R}^{+}\).

Proof

Let

$$ F(t,u)= \textstyle\begin{cases} f(t,\beta(t)),& u>\beta(t), \\ f(t,u), &\alpha(t)\leq u \leq\beta(t), \\ f(t,\alpha(t)),& u< \alpha(t). \end{cases} $$

Since f is an \(L^{1}\)-Carathéodory function, then F is an \(L^{1}\)-Carathéodory function, too.

By Lemma 2.1, the boundary value problem

$$ \textstyle\begin{cases} D_{0^{+}}^{\delta}u(t)+q(t)F(t,u(t))=0,\quad t\in(0,+\infty), \\ u(0)=D_{0^{+}}^{\delta-1}u(+\infty)=0, \\ D_{0^{+}}^{\delta-2}u(0) =\sum_{i=1}^{\infty}g(\xi_{i})D_{0^{+}}^{\delta-1}u(\xi_{i})+\lambda \end{cases} $$
(3.1)

is equivalent to the integral equation

$$u(t)= \int_{0}^{+\infty}G(t,s)q(s)F\bigl(s,u(s)\bigr)\, \mathrm{d}s +\frac{\lambda}{\Gamma(\delta-1)}t^{\delta-2}. $$

Define the operator \(Q: P\rightarrow P\) by

$$(Qu) (t)= \int_{0}^{+\infty}G(t,s)q(s)F\bigl(s,u(s)\bigr)\, \mathrm{d}s +\frac{\lambda}{\Gamma(\delta-1)}t^{\delta-2}. $$

For any \(u\in P\) and \(t\in\mathbb{R}^{+}\), by (H2), we can get

$$0\leq F\bigl(t,u(t)\bigr) \leq f\bigl(t,\beta(t)\bigr) =f\biggl(t, \bigl(1+t^{{\delta-1}}\bigr)\frac{\beta(t)}{1+t^{{\delta-1}}}\biggr) \leq\varphi_{\|\beta\|}(t). $$

Let \(\Omega_{1}=\{u\in P: \|u\|\leq R\}\), where the constant \(R=\frac {L}{\Gamma(\delta)} \int_{0}^{+\infty}q(s)\varphi_{\|\beta\|}(s)\,\mathrm{d}s +\frac{\lambda}{\Gamma(\delta-1)}\).

Obviously, \(\Omega_{1}\) is a closed and convex set. Then, for any \(u\in \Omega_{1}\),

$$\begin{aligned} \frac{ \vert Qu(t) \vert }{1+t^{{\delta-1}}} =& \biggl\vert \int_{0}^{+\infty}\frac{G(t,s)}{1+t^{{\delta-1}}} q(s)F\bigl(s,u(s) \bigr)\,\mathrm{d}s +\frac{\lambda}{\Gamma(\delta-1)} \frac{t^{\delta-2}}{1+t^{{\delta-1}}} \biggr\vert \\ \leq&\frac{L}{\Gamma(\delta)} \int_{0}^{+\infty}q(s){\varphi}_{\|\beta\|}(s)\, \mathrm{d}s +\frac{\lambda}{\Gamma(\delta-1)}=R. \end{aligned}$$

That is, \(\|Qu\|\leq R\), which implies \(Q: \Omega_{1}\rightarrow\Omega_{1}\).

We can easily show that Q is completely continuous since its proof is similar to Lemma 2.4.

According to the Schauder fixed point theorem, we know that Q has at least one fixed point u. By Lemma 2.6, boundary value problem (3.1) has a positive solution u.

Next, we prove \(\alpha(t)\leq u(t)\leq\beta(t)\) for \(t\in\mathbb {R}^{+}\), and \(u=u(t)\) is a solution of boundary value problem (1.1).

Let \(v(t)=u(t)-\alpha(t)\). According to (H2), we get

$$\begin{aligned}& D_{0^{+}}^{\delta}v(t)= D_{0^{+}}^{\delta}u(t)-D_{0^{+}}^{\delta} \alpha(t) =-q(t)F\bigl(t,u(t)\bigr)-D_{0^{+}}^{\delta}\alpha(t) \\& \hphantom{D_{0^{+}}^{\delta}v(t)}\leq -q(t)F\bigl(t,u(t)\bigr)+q(t)f\bigl(t,\alpha(t)\bigr)\leq0, \\& v(0)= u(0)-\alpha(0)=0, \\& D_{0^{+}}^{\delta-1}v(+\infty)= D_{0^{+}}^{\delta-1}u(+ \infty)- D_{0^{+}}^{\delta-1}\alpha(+\infty)=0, \end{aligned}$$

and

$$\begin{aligned} D_{0^{+}}^{\delta-2}v(0)&=D_{0^{+}}^{\delta-2}u(0) -D_{0^{+}}^{\delta-2}\alpha(0) \\ &\geq\sum_{i=1}^{\infty}g(\xi_{i})D_{0^{+}}^{\delta-1}u( \xi_{i}) +\lambda-\sum_{i=1}^{\infty}g( \xi_{i})D_{0^{+}}^{\delta-1}\alpha(\xi_{i}) - \lambda \\ &=\sum_{i=1}^{\infty}g(\xi_{i})D_{0^{+}}^{\delta-1} \bigl(u(\xi_{i}) -\alpha(\xi_{i})\bigr) =\sum _{i=1}^{\infty}g(\xi_{i})D_{0^{+}}^{\delta-1}v( \xi_{i}). \end{aligned}$$

From Lemma 3.1, we have \(v(t)\geq0\) for \(t\in\mathbb {R}^{+}\), which implies that \(u(t)\geq\alpha(t)\) for \(t\in\mathbb{R}^{+}\).

Similarly, we can show that \(u(t)\leq\beta(t)\) for \(t\in\mathbb{R}^{+}\).

Therefore, each solution u of boundary value problem (3.1) satisfies \(\alpha(t)\leq u(t)\leq\beta(t)\) for \(t\in\mathbb{R}^{+}\). That is, \(F(t,u(t))=f(t,u(t))\), and u is a positive solution of boundary value problem (1.1). □

4 The properties of positive solutions

Theorem 4.1

Assume (H1) and (H2) hold.

  1. (1)

    If there exists a constant \(\lambda=\overline{\lambda}\geq0\) such that boundary value problem (1.1) has a positive solution \(\overline{u}=\overline{u}(t)\), then for each \(0\leq\lambda\leq \overline{\lambda}\), boundary value problem (1.1) has a positive solution u and \(\frac{\lambda t^{\delta-2}}{\Gamma(\delta -1)}\leq u(t)\leq\overline{u}(t)\) for \(t\in\mathbb{R}^{+}\).

  2. (2)

    If there exists a constant \(\lambda=\underline{\lambda} \geq0\) such that boundary value problem (1.1) does not have positive solutions, then for each \(\lambda\geq\underline{\lambda}\), boundary value problem (1.1) does not have positive solutions.

Proof

(1) Since \(\overline{u}=\overline{u}(t)\) is a positive solution of boundary value problem (1.1) with \(\lambda=\overline {\lambda}\), then by Lemma 2.1,

$$\overline{u}(t) = \int_{0}^{+\infty}G(t,s)q(s)f\bigl(s,\overline{u}(s)\bigr) \,\mathrm{d}s +\frac{\overline{\lambda}t^{\delta-2}}{\Gamma(\delta-1)}. $$

Therefore, we can obtain that for any \(0\leq\lambda\leq\overline {\lambda}\), \(\overline{u}(t) \geq\frac{\overline{\lambda}t^{\delta-2}}{\Gamma(\delta-1)}\geq\frac {\lambda t^{\delta-2}}{\Gamma(\delta-1)}\), \(t\in\mathbb{R}^{+}\).

We take \(\alpha=\frac{\lambda t^{\delta-2}}{\Gamma(\delta-1)}\) and \(\beta=\overline{u}\), obviously, \(\alpha\leq\beta\). We can easily show that α is a lower solution and β is an upper solution of boundary value problem (1.1), respectively.

Then, according to Theorem 3.2, we can obtain that for any \(0\leq\lambda\leq\overline{\lambda}\), boundary value problem (1.1) has a positive solution u and \(\frac{\lambda t^{\delta -2}}{\Gamma(\delta-1)}\leq u(t)\leq\overline{u}(t)\) for \(t\in\mathbb{R}^{+}\).

(2) Assume that there exists a constant \(\lambda_{0}\geq\underline{\lambda }\) such that boundary value problem (1.1) has a positive solution. In view of (1) in this theorem, for \(\lambda=\underline {\lambda}\leq\lambda_{0}\), boundary value problem (1.1) has a positive solution, which is a contradiction. □

Denote

$$\begin{aligned}& f^{0}=\limsup_{u\rightarrow0^{+}}\sup_{t\in\mathbb{R}^{+}} \frac {f(t,(1+t^{\delta-1})u)}{u},\qquad f_{\infty}=\liminf_{u\rightarrow+\infty }\inf _{t\in[\frac{1}{k},k]}\frac{f(t,(1+t^{\delta-1})u)}{u}, \\& \rho_{1} =\frac{\Gamma(\delta)}{\delta-1+L\int_{0}^{+\infty}q(s)\,\mathrm{d}s},\qquad \rho_{2} = \frac{4k^{2}(1+k^{\delta-1})^{2}\Gamma(\delta)}{ \int_{\frac{1}{k}}^{k}q(s)\,\mathrm{d}s}. \end{aligned}$$

Theorem 4.2

Suppose (H1) holds, if \(f^{0}<\rho_{1}\), then there exists a constant \(\lambda_{*}\geq0\) such that boundary value problem (1.1) with \(\lambda=\lambda_{*}\) has at least one positive solution.

Proof

Because \(f^{0}<\rho_{1}\), there exists a constant \(r_{1}>0\) such that \(f(t,(1+t^{\delta-1})u)<\rho_{1} u\leq\rho_{1} r_{1}\) for any \(t\in\mathbb{R}^{+}\) and \(u\in(0,r_{1}]\).

Set \(B=\{u\in P: \|u\|\leq r_{1}\}\) and \(0\leq\lambda_{*}\leq\rho_{1} r_{1}\). Then, for any \(u\in B\),

$$f\bigl(s,u(s)\bigr)=f\biggl(s,\bigl(1+s^{\delta-1}\bigr)\frac{u(s)}{1+s^{\delta-1}} \biggr) \leq\rho_{1}\frac{u(s)}{1+s^{\delta-1}}\leq\rho_{1} r_{1} $$

and

$$\begin{aligned} \frac{Tu(t)}{1+t^{{\delta-1}}} =& \int_{0}^{+\infty}\frac{G(t,s)}{1+t^{{\delta -1}}}q(s)f\bigl(s,u(s) \bigr)\,\mathrm{d}s +\frac{\lambda_{*}}{\Gamma(\delta-1)}\frac{t^{\delta-2}}{1+t^{\delta-1}} \\ \leq&\frac{L\rho_{1}r_{1}}{\Gamma(\delta)} \int_{0}^{+\infty}q(s)\,\mathrm{d}s +\frac{\lambda_{*}}{\Gamma(\delta-1)} \\ \leq&\frac{L\rho_{1}r_{1}}{\Gamma(\delta)} \int_{0}^{+\infty}q(s)\,\mathrm{d}s +\frac{\rho_{1} r_{1}}{\Gamma(\delta-1)} \\ =&\frac{\rho_{1}r_{1}}{\Gamma(\delta)} \biggl(L \int_{0}^{+\infty}q(s)\,\mathrm{d}s +\delta-1 \biggr) \\ =&r_{1}. \end{aligned}$$

So \(T(B)\subset B\). According to the Schauder fixed point theorem, we can obtain that T has at least one fixed point on B. By Lemma 2.6, boundary value problem (1.1) has at least one positive solution. □

Theorem 4.3

Suppose (H1) holds, if \(f_{\infty}>\rho_{2}\), then there exist large enough positive constants λ̂ such that boundary value problem (1.1) with \(\lambda=\hat{\lambda}\) has no positive solution.

Proof

Assume that there exists a constant \(\hat{\lambda}>0\) and λ̂ is large enough, boundary value problem (1.1) with \(\lambda=\hat{\lambda}\) has a positive solution \(\hat{u}=\hat{u}(t)\). By \(f_{\infty}>\rho_{2}\), we know that

$$f\bigl(t,\bigl(1+t^{\delta-1}\bigr)u\bigr)>\rho_{2} u, $$

for \(t\in[\frac{1}{k},k]\) and \(u\geq r_{2}\), where constant \(r_{2}>0\) is large enough.

Take \(\hat{\lambda}>\Gamma(\delta-1)(1+k^{\delta-1})r_{2}\). By Lemma 2.1,

$$\hat{u}(t) = \int_{0}^{+\infty}G(t,s)q(s)f\bigl(s,\hat{u}(s)\bigr)\, \mathrm{d}s +\frac{\hat{\lambda}}{\Gamma(\delta-1)}t^{\delta-2}, $$

then

$$\frac{\hat{u}(\frac{1}{k})}{1+(\frac{1}{k})^{{\delta -1}}}\geq\frac{\hat{\lambda}}{\Gamma(\delta-1)} \frac{(\frac{1}{k})^{\delta-2}}{1+(\frac{1}{k})^{\delta-1}} =\frac{\hat{\lambda}}{\Gamma(\delta-1)} \frac{k}{1+k^{\delta-1}}>\frac{\hat{\lambda}}{\Gamma(\delta-1)} \frac{1}{1+k^{\delta-1}}>r_{2}, $$

and \(\|\hat{u}\|>r_{2}\). Then, for \(s\in[\frac{1}{k},k]\),

$$f\bigl(s,\hat{u}(s)\bigr) =f\biggl(s,\bigl(1+s^{\delta-1}\bigr) \frac{\hat{u}(s)}{1+s^{\delta-1}}\biggr) >\rho_{2}\frac{\hat{u}(s)}{1+s^{\delta-1}}. $$

According to Lemma 2.5, we have \(\min_{\frac{1}{k}\leq t \leq k}\frac{\hat{u}(t)}{1+t^{\delta-1}}\geq\frac {1}{4k^{2}(1+k^{\delta-1})}\|\hat{u}\|\). Then

$$\begin{aligned} \frac{\hat{u}(\frac{1}{k})}{1+(\frac{1}{k})^{{\delta-1}}} =& \int_{0}^{+\infty}\frac{G(\frac{1}{k},s)}{1+(\frac{1}{k})^{ {\delta-1}}}q(s)f\bigl(s, \hat{u}(s)\bigr)\,\mathrm{d}s +\frac{\hat{\lambda}}{\Gamma(\delta-1)} \frac{(\frac{1}{k})^{\delta-2}}{1+(\frac{1}{k})^{\delta-1}} \\ \geq& \int_{\frac{1}{k}}^{k}\frac{G_{1}(\frac{1}{k},s)}{1+(\frac{1}{k})^{{\delta-1}}}q(s)f\bigl(s, \hat{u}(s)\bigr)\,\mathrm{d}s +\frac{\hat{\lambda}}{\Gamma(\delta-1)}\frac{k}{1+k^{\delta-1}} \\ \geq &\frac{\rho_{2}}{\Gamma(\delta)} \int_{\frac{1}{k}}^{k} \frac{(\frac{1}{k})^{\delta-1}}{1+(\frac{1}{k})^{\delta-1}} \frac{\hat{u}(s)}{1+s^{\delta-1}}q(s)\,\mathrm{d}s +\frac{\hat{\lambda}}{\Gamma(\delta-1)}\frac{1}{1+k^{\delta-1}} \\ >&\frac{\rho_{2}\|\hat{u}\|}{4k^{2}(1+k^{\delta-1})^{2}\Gamma(\delta)} \int_{\frac{1}{k}}^{k}q(s)\,\mathrm{d}s+r_{2} \\ =&\|\hat{u}\|+r_{2}. \end{aligned}$$

That is, \(\|\hat{u}\|>\|\hat{u}\|+r_{2}\), which is a contradiction. Thus, there exist large enough constants \(\hat{\lambda }>0\) such that boundary value problem (1.1) with \(\lambda=\hat{\lambda }\) has no positive solution. □

Theorem 4.4

Let \(I\subset[0,+\infty)\) be a bounded set. Suppose (H1) holds, \(f_{\infty}>\rho_{2}\), then for each \(\lambda\in I\), there exists a constant \(\tau>0\) such that \(\|u\|\leq\tau\), where \(u=u(t)\) is a solution of boundary value problem (1.1).

Proof

Because I is a bounded set, then for each \(\lambda\in I\), there exists a constant \(\sigma>0\) such that \(0\leq\lambda\leq\sigma\).

Since \(f_{\infty}>\rho_{2}\), there exists a constant \(r>0\) such that \(f(t,(1+t^{\delta-1})u)>\rho_{2} u\) for any \(t\in[\frac{1}{k},k]\) and \(u\geq r\).

Let \(\tau=4k^{2}(1+k^{\delta-1})r\). Assume that boundary value problem (1.1) has a solution \(u=u(t)\) that satisfies \(\|u\|>\tau\). Then

$$\min_{\frac{1}{k}\leq t \leq k}\frac{u(t)}{1+t^{\delta-1}}\geq\frac {1}{4k^{2}(1+k^{\delta-1})}\|u\| > \frac{1}{4k^{2}(1+k^{\delta-1})}\tau=r. $$

By Lemmas 2.1 and 2.5, we have

$$\begin{aligned} \frac{u(\frac{1}{k})}{1+(\frac{1}{k})^{{\delta-1}}} =& \int_{0}^{+\infty}\frac{G(\frac{1}{k},s)}{1+(\frac{1}{k})^{ {\delta-1}}}q(s)f\bigl(s,u(s) \bigr)\,\mathrm{d}s +\frac{\lambda}{\Gamma(\delta-1)} \frac{(\frac{1}{k})^{\delta-2}}{1+(\frac{1}{k})^{\delta-1}} \\ \geq& \int_{\frac{1}{k}}^{k}\frac{G_{1}(\frac{1}{k},s)}{1+(\frac{1}{k})^{{\delta-1}}}q(s)f\bigl(s,u(s) \bigr)\,\mathrm{d}s \\ \geq&\frac{\rho_{2}}{\Gamma(\delta)} \int_{\frac{1}{k}}^{k} \frac{(\frac{1}{k})^{\delta-1}}{1+(\frac{1}{k})^{\delta-1}} \frac{u(s)}{1+s^{\delta-1}}q(s)\,\mathrm{d}s \\ >&\frac{\rho_{2}\|u\|}{4k^{2}(1+k^{\delta-1})^{2}\Gamma(\delta)} \int_{\frac{1}{k}}^{k}q(s)\,\mathrm{d}s=\|u\|, \end{aligned}$$

which is a contradiction.

So, for all solutions of boundary value problem (1.1), \(u=u(t)\) satisfies that \(\|u\|\leq\tau\). □

5 Existence, nonexistence and multiplicity of positive solutions

Theorem 5.1

Suppose that (H1), (H2) hold, \(f^{0}<\rho_{1}\) and \(f_{\infty}>\rho_{2}\), then there exists a constant \(\lambda^{*}\in(0,+\infty)\) such that the following results hold:

  1. (1)

    Boundary value problem (1.1) has at least one positive solution for \(\lambda=0\) and \(\lambda=\lambda^{*}\);

  2. (2)

    Boundary value problem (1.1) has at least two positive solutions for each \(\lambda\in(0,\lambda^{*})\);

  3. (3)

    Boundary value problem (1.1) does not have any positive solutions for each \(\lambda\in(\lambda^{*}, +\infty)\).

Proof

Let

$$\begin{aligned} \Lambda =&\bigl\{ \lambda\in [0,+\infty ): \mbox{the }\lambda \mbox{ such that boundary value problem (1.1)} \\ &\mbox{has at least one positive solution}\bigr\} . \end{aligned}$$

Then by Theorem 4.2 we know that \(\Lambda\neq\emptyset\).

In view of Theorem 4.1, \([0,\tilde{\lambda}]\subset\Lambda\) if and only if \(\tilde{\lambda}\in\Lambda\).

According to \(f_{\infty}>\rho_{2}\) and Theorem 4.3, we can show that Λ is a bounded set. Let \(\overline{M}=\bigcup_{\tilde {\lambda}\in\Lambda}[0,\tilde{\lambda}]\), then is a bounded set. Therefore, has a supremum which is denoted by \(\lambda^{*}=\sup\overline{M} >0\).

Next, we will prove that boundary value problem (1.1) has at least one positive solution for \(\lambda=\lambda^{*}\).

Since \(\lambda^{*}=\sup\overline{M}\), there exists a sequence \(\{ \lambda_{m}\}\subset\overline{M}\) that satisfies \(\lambda_{m}<\lambda^{*}\) such that \(\lambda_{m}\rightarrow\lambda^{*}\) as \(m\rightarrow+\infty\). Let \(u_{m}(t)\) be the solution of boundary value problem (1.1) with \(\lambda=\lambda_{m}\). In view of Lemma 2.1, we know that boundary value problem (1.1) with \(\lambda=\lambda_{m}\) is equivalent to

$$u_{m}(t)= \int_{0}^{+\infty}G(t,s)q(s)f\bigl(s,u_{m}(s) \bigr)\,\mathrm{d}s +\frac{\lambda_{m}}{\Gamma(\delta-1)}t^{\delta-2},\quad m=1,2,\ldots. $$

According to Theorem 4.4, there exists a constant τ such that \(\|u_{m}\|\leq\tau\), which implies that \(\{u_{m}(t)\}\) is uniformly bounded. By Lemma 2.4, we can easily show that \(\{u_{m}(t)\}\) is equicontinuous. Then we know that \(\{u_{m}(t)\}\) has a convergent subsequence, we assume that \(\{u_{m}(t)\}\) itself converges uniformly to u on \(\mathbb{R}^{+}\), and \(u\in P\). Since f is an \(L^{1}\)-Carathéodory function, then by the Lebesgue dominated convergence theorem, as \(m\rightarrow+\infty\), we have

$$u(t)= \int_{0}^{+\infty}G(t,s)q(s)f\bigl(s,u(s)\bigr)\, \mathrm{d}s +\frac{\lambda^{*}}{\Gamma(\delta-1)}t^{\delta-2}. $$

Hence, boundary value problem (1.1) has a positive solution u for \(\lambda=\lambda^{*}\). By Theorem 4.1, boundary value problem (1.1) has at least one positive solution for \(\lambda\in [0,\lambda^{*}]\). And by the definition of \(\lambda^{*}\) we know that boundary value problem (1.1) does not have positive solutions for each \(\lambda\in(\lambda^{*},+\infty)\).

Finally, we prove that boundary value problem (1.1) has at least two positive solutions for \(\lambda\in(0,\lambda^{*})\).

For each \(\lambda\in(0,\lambda^{*})\), there exist \(\underline{\lambda },\overline{\lambda}\in\overline{M}\) such that \(0<\underline{\lambda }<\lambda<\overline{\lambda}\). Let , \(\underline{u}\) be the solutions of boundary value problem (1.1) for \(\lambda =\overline{\lambda}\), \(\lambda=\underline{\lambda}\), respectively. Then, according to Theorem 4.1, boundary value problem (1.1) has a positive solution \(u_{1}=u_{1}(t)\) for \(\lambda=\lambda_{1}\), and \(\underline{u}(t)\leq u_{1}(t)\leq\overline{u}(t)\).

Let \(\alpha=\underline{u}\) and \(\beta=\overline{u}\). We can easily verify that α is a lower solution and β is an upper solution of boundary value problem (1.1), and \(\alpha(t)<\beta(t)\).

Choose \(\hat{\lambda}>\lambda^{*}\) satisfies \(\lambda<\lambda ^{*}<\hat{\lambda}\).

We define \(K: [\lambda,\hat{\lambda}]\times P\rightarrow E\) by

$$K(r,u)= \int_{0}^{+\infty}G(t,s)q(s)f\bigl(s,u(s)\bigr)\, \mathrm{d}s +\frac{r}{\Gamma(\delta-1)}t^{\delta-2}. $$

Let

$$ F(t,u)= \textstyle\begin{cases} f(t,\beta(t)),& u>\beta(t), \\ f(t,u),& \alpha(t)\leq u \leq\beta(t), \\ f(t,\alpha(t)),& u< \alpha(t). \end{cases} $$

Define an integral operator \(\widehat{K}: [\lambda,\hat{\lambda }]\times P\rightarrow E\) by

$$\widehat{K}(r,u)= \int_{0}^{+\infty}G(t,s)q(s)F\bigl(s,u(s)\bigr)\, \mathrm{d}s +\frac{r}{\Gamma(\delta-1)}t^{\delta-2}. $$

We can easily prove that K and are completely continuous for each \(r\in[\lambda,\hat{\lambda}]\) according to Lemma 2.4. In view of Lemma 2.6, u is a positive solution of boundary value problem (1.1) if and only if \(u=K(\lambda,u)\).

By Theorem 4.4, there exists a constant τ such that the fixed point u of K satisfies \(\|u\|\leq\tau\) for each \(r\in[\lambda ,\hat{\lambda}]\). Let

$$\Omega=\bigl\{ u\in P: \|u\|< \tau, \alpha(t)< u(t)< \beta(t), t\in\mathbb {R}^{+}\bigr\} . $$

Obviously, \(\Omega\subset P\) is a nonempty open-bounded subset, then \(u_{1}\in\Omega\).

Since F is an \(L^{1}\)-Carathéodory function, then \(F(t,u(t))\leq \varphi_{\|\beta\|}(t)\). For any \((r,u)\in[\lambda,\hat{\lambda }]\times P\), there exists a constant \(R>\tau>0\) such that \(\frac {\widehat{K}(r,u)}{1+t^{\delta-1}}< R\). Let \(B(\theta,R)=\{u\in E:\|u\| < R\}\). Then \(\Omega\subset P\cap B(\theta,R)\) and \(u\neq\mu\widehat {K}u\) for \(u\in P\cap\partial B(\theta,R)\) and any \(\mu\in[0,1]\). Otherwise, if there exists \(u_{0}\in P\cap\partial B(\theta,R)\) such that \(u_{0}=\mu\widehat{K}u_{0}\), then \(R=\|u_{0}\|=\mu\|\widehat{K}u_{0}\|<\mu R<R\), which is a contradiction. Hence, according to Lemma 2.7, for each \(r\in[\lambda,\hat{\lambda}]\),

$$i\bigl(\widehat{K}(r,u),P\cap B(\theta,R), P\bigr)=1. $$

Since does not have a fixed point on \(P\cap(\overline {B(\theta,R)}\backslash\Omega)\), thus for any \(r\in[\lambda,\hat {\lambda}]\),

$$i\bigl(\widehat{K}(r,u),P\cap\bigl(B(\theta,R)\backslash\overline{\Omega}\bigr), P\bigr)=0. $$

Since \(\widehat{K}|_{\Omega}=K\), then by the excision property of the fixed point index, we can obtain that for each \(r\in[\lambda ,\hat{\lambda}]\),

$$\begin{aligned} i\bigl(K(r,u),P\cap\Omega,P\bigr)&=i\bigl(\widehat{K}(r,u),P\cap \Omega,P\bigr) \\ &=i\bigl(\widehat{K}(r,u),P\cap B(\theta,R), P\bigr)-i\bigl(\widehat{K}(r,u),P \cap \bigl(B(\theta,R)\backslash\overline{\Omega}\bigr), P\bigr) \\ &=1. \end{aligned}$$
(5.1)

Since \(\hat{\lambda}>\lambda^{*}\), we know that boundary value problem (1.1) does not have positive solutions for each \(\lambda \in(\lambda^{*},+\infty)\), then \(K(\hat{\lambda},u)\neq u\) for any \(u\in P\). Hence,

$$ i\bigl(K(\hat{\lambda},u),P\cap B(\theta,R), P\bigr)=0. $$
(5.2)

Define \(H:[0,1]\times P\cap\overline{B(\theta,R)}\rightarrow E\) by

$$H(\mu,u)=K\bigl((1-\mu)\lambda+\mu\hat{\lambda},u\bigr). $$

Obviously, H is completely continuous.

We have \(H(\mu,u)\neq u\) for \((\mu,u)\in[0,1]\times P\cap\partial {B(\theta,R)}\). Otherwise, if there exists \((\mu_{0},u_{0})\in[0,1]\times P\cap\partial {B(\theta,R)}\) such that \(H(\mu_{0},u_{0})= u_{0}\), then

$$K\bigl((1-\mu_{0})\lambda+\mu_{0}\hat{\lambda},u_{0} \bigr)=u_{0},\quad u_{0}\in P, \|u_{0}\|=R. $$

Therefore, \(u_{0}=u_{0}(t)\) is a solution of boundary value problem (1.1) with \(\lambda=(1-\mu_{0})\lambda+\mu_{0}\hat{\lambda}\). Then \(\| u_{0}\|\leq\tau\), which is a contradiction.

By (5.2) and the homotopy invariance of the fixed point index, we have

$$\begin{aligned} i\bigl(K(\lambda,u),P\cap B(\theta,R), P\bigr)&=i\bigl(H(0,u),P \cap B(\theta,R), P\bigr) \\ &=i\bigl(H(1,u),P\cap B(\theta,R), P\bigr) \\ &=i\bigl(K(\hat{\lambda},u),P\cap B(\theta,R), P\bigr)=0. \end{aligned}$$
(5.3)

According to (5.1), (5.3) and by using the additivity property of the fixed point index, we have

$$i\bigl(K(\lambda,u),P\cap B(\theta,R)\backslash\overline{\Omega}, P\bigr)=-1. $$

Therefore, boundary value problem (1.1) has a solution \(u_{2}\in P\cap B(\theta,R)\backslash\overline{\Omega}\). Because \(u_{1}\in\Omega\), we have \(u_{1}\neq u_{2}\). Hence, boundary value problem (1.1) has at least two positive solutions for \(\lambda\in(0,\lambda^{*})\).

The proof is completed. □

Definition 5.1

see [28, 29]

Suppose that E is a Banach space, \(P\subset E\) is a cone. We say that γ is a nonnegative, continuous, concave functional on P if \(\gamma: P\rightarrow[0,+\infty)\) is continuous, and

$$\gamma\bigl(\mu x+(1-\mu)y\bigr)\geq\mu\gamma(x)+(1-\mu)\gamma(y) $$

for all \(x,y\in P\) and \(\mu\in[0,1]\).

Set

$$P_{c}=\bigl\{ u\in P: \Vert u \Vert < c\bigr\} ,\qquad P(\gamma, a, b)=\bigl\{ u\in P: a\leq\gamma(u), \| u\|\leq b\bigr\} . $$

Lemma 5.2

see [29]

Suppose that there exist constants \(0< a< b< d\leq c\), \(T:\overline {P}_{c}\rightarrow\overline{P}_{c}\) is a completely continuous operator, \(\gamma: P\rightarrow[0,+\infty)\) is a continuous concave functional, for \(u\in\overline{P}_{c}\), we have \(\gamma(u)\leq\|u\|\), and the following conditions hold:

  1. (C1)

    \(\{u\in P(\gamma, b, d)\mid\gamma(u)>b\}\neq\emptyset\), and for \(u\in P(\gamma, b, d)\), \(\gamma(Tu)>b\);

  2. (C2)

    for \(u\in\overline{P}_{a}\), we have \(\|Tu\|< a\);

  3. (C3)

    for \(u\in P(\gamma, b, c)\) and \(\|Tu\|>d\), we have \(\gamma(Tu)>b\).

Then T has at least three fixed points \(u_{1}\), \(u_{2}\) and \(u_{3}\) satisfying

$$\|u_{1}\|< a< \|u_{3}\|,\qquad \gamma(u_{3})< b< \gamma(u_{2}). $$

Theorem 5.3

Suppose (H1) holds. Let \(0< a< b< d\leq c\), \(\lambda< a\rho_{1}\), \(b\rho_{2}< c\rho_{1}\) and suppose that f satisfies the following conditions:

  1. (H3)

    \(f(t,(1+t^{\delta-1})u)< a\rho_{1}\), \((t,u)\in\mathbb{R}^{+}\times[0,a]\);

  2. (H4)

    \(f(t,(1+t^{\delta-1})u)>b\rho_{2}\), \((t,u)\in[\frac{1}{k},k]\times[b,c]\);

  3. (H5)

    \(f(t,(1+t^{\delta-1})u)< c\rho_{1}\), \((t,u)\in\mathbb{R}^{+}\times[0,c]\).

Then boundary value problem (1.1) has at least three positive solutions \(u_{1}\), \(u_{2}\) and \(u_{3}\) such that

$$\|u_{1}\|< a,\qquad b< \gamma(u_{2}),\qquad a< \|u_{3}\| \quad \textit{and} \quad \gamma(u_{3})< b. $$

Proof

Define a nonnegative, continuous, concave functional on E by

$$\gamma(u)=\min_{\frac{1}{k}\leq t\leq k}\frac{u(t)}{1+t^{\delta-1}}. $$

Next, we prove that the conditions of Lemma 5.2 hold.

For \(u\in\overline{P}_{c}\), we have \(\|u\|\leq c\), then for \(t\in\mathbb {R}^{+}\), \(0\leq\frac{u(t)}{1+t^{\delta-1}}\leq c\).

According to assumption (H5), we get

$$f\bigl(s,u(s)\bigr)=f\biggl(s,\bigl(1+s^{\delta-1}\bigr)\frac{u(s)}{1+s^{\delta-1}} \biggr)< c\rho_{1}. $$

Hence,

$$\begin{aligned} \frac{Tu(t)}{1+t^{{\delta-1}}} =& \int_{0}^{+\infty}\frac{G(t,s)}{1+t^{{\delta-1}}} q(s)f\bigl(s,u(s) \bigr)\,\mathrm{d}s+\frac{\lambda}{\Gamma(\delta-1)} \frac{t^{\delta-2}}{1+t^{{\delta-1}}} \\ \leq&\frac{L}{\Gamma(\delta)}c\rho_{1} \int_{0}^{+\infty}q(s)\,\mathrm{d}s +\frac{\lambda}{\Gamma(\delta-1)} \\ \leq&\frac{\rho_{1}}{\Gamma(\delta)}\biggl(L \int_{0}^{+\infty}q(s)\,\mathrm{d}s +\delta-1\biggr)c=c. \end{aligned}$$

Therefore, \(T:\overline{P}_{c}\rightarrow\overline{P}_{c}\). According to Lemma 2.4, we have T is completely continuous.

Similarly, it follows from assumption (H3) that if \(u\in\overline {P}_{a}\), we have \(\|Tu\|\leq a\). Condition (C2) of Lemma 5.2 holds.

Let \(u^{*}(t)=\frac{b+c}{2}(1+t^{\delta-1})\), \(t\in\mathbb{R}^{+}\). We can show that \(u^{*}\in P\) and \(\|u^{*}\|=\frac{b+c}{2}< c\). According to the definition of \(\gamma(u)\), we get \(\gamma(u^{*})=\frac {b+c}{2}>b\). Hence, \(u^{*}\in\{u\in P(\gamma, b, d)\mid\gamma(u)>b\} \neq\emptyset\).

On the other hand, if \(u\in P(\gamma, b, d)\), then \(b\leq\min_{\frac {1}{k}\leq t\leq k}\frac{u(t)}{1+t^{\delta-1}}\) and \(\|u\|\leq d\leq c\). Hence, for \(t\in[\frac{1}{k}, k]\), we have \(b\leq\frac {u(t)}{1+t^{\delta-1}}\leq c\). Then by assumption (H4), we get

$$f\bigl(s,u(s)\bigr)=f\biggl(s,\bigl(1+s^{\delta-1}\bigr)\frac{u(s)}{1+s^{\delta-1}} \biggr)> b\rho_{2}. $$

Therefore,

$$\begin{aligned} \gamma(Tu) =&\min_{\frac{1}{k}\leq t \leq k}\frac{Tu(t)}{1+t^{\delta -1}} \\ =&\min_{\frac{1}{k}\leq t \leq k} \biggl( \int_{0}^{+\infty}\frac{G(t,s)}{1+t^{\delta-1}} q(s)f\bigl(s,u(s) \bigr)\,\mathrm{d}s+\frac{\lambda}{\Gamma(\delta-1)} \frac{t^{\delta-2}}{1+t^{{\delta-1}}} \biggr) \\ \geq& \int_{0}^{+\infty}\min_{\frac{1}{k}\leq t \leq k} \frac {G(t,s)}{1+t^{\delta-1}}q(s)f\bigl(s,u(s)\bigr)\,\mathrm{d}s \\ \geq&\frac{1}{4k^{2}(1+k^{\delta-1})} \int_{0}^{+\infty}\sup_{t\in\mathbb {R_{+}}}{ \frac{G(t,s)}{1+t^{\delta-1}}}q(s)f\bigl(s,u(s)\bigr)\,\mathrm{d}s \\ \geq&\frac{1}{4k^{2}(1+k^{\delta-1})} \int_{\frac{1}{k}}^{k}\frac{G_{1}(\frac{1}{k},s)}{1+(\frac{1}{k})^{\delta-1}} q(s)f\bigl(s,u(s) \bigr)\,\mathrm{d}s \\ >&\frac{b\rho_{2}}{\Gamma(\delta)4k^{2}(1+k^{\delta-1})} \int_{\frac{1}{k}}^{k}\frac{1}{1+k^{\delta-1}}q(s)\,\mathrm{d}s \\ =&\frac{b\rho_{2}}{\Gamma(\delta)4k^{2}(1+k^{\delta-1})^{2}} \int_{\frac{1}{k}}^{k}q(s)\,\mathrm{d}s=b. \end{aligned}$$

Hence, for all \(u\in P(\gamma, b, d)\), we have \(\gamma(Tu)>b\), which implies that condition (C1) of Lemma 5.2 holds.

Finally, for \(u\in P(\gamma, b, c)\) and \(\|Tu\|>d\), we have \(b\leq\min_{\frac{1}{k}\leq t\leq k}\frac{u(t)}{1+t^{\delta-1}}\) and \(\|u\|\leq c\). Hence, \(b\leq\frac{u(t)}{1+t^{\delta-1}}\leq c\) for \(t\in[\frac {1}{k}, k]\). According to assumption (H4), we can obtain \(\gamma (Tu)>b\). Condition (C3) of Lemma 5.2 holds.

By Lemma 5.2, T has at least three fixed points \(u_{1}\), \(u_{2}\), \(u_{3}\) such that \(\|u_{1}\|< a\), \(b<\gamma(u_{2})\), \(a<\|u_{3}\|\) and \(\gamma(u_{3})< b\). These fixed points are positive solutions of (1.1). □

6 Examples

To illustrate our main results, we present the following examples.

Example 6.1

We consider the infinite-point boundary value problem of nonlinear fractional differential equations on the infinite interval

$$ \textstyle\begin{cases} D_{0^{+}}^{\frac{8}{3}}u(t)+e^{-t-t^{\frac{5}{3}}}u^{2}=0, \quad t\in (0,+\infty), \\ u(0)= D_{0^{+}}^{\frac{5}{3}}u(+\infty)=0, \\ D_{0^{+}}^{\frac{2}{3}}u(0) =\sum_{i=1}^{\infty}\frac{1}{i^{2}}D_{0^{+}}^{\frac{5}{3}}u(i) +\lambda, \end{cases} $$
(6.1)

where \(\delta=\frac{8}{3}\), \(q(t)=e^{-t}\), \(f(t,u)=e^{-t^{\frac {5}{3}}}u^{2}\), it is easy to show that (H2) holds. Let \(g(t)=\frac {1}{t^{2}}\), \(\xi_{i}=i\), then \(\sum_{i=1}^{\infty}g(\xi_{i})=\frac{\pi ^{2}}{6}\) is convergent. Let \(\varphi_{r}(t)=r^{2}(1+t^{\frac {5}{3}})^{2}e^{-t^{\frac{5}{3}}}\in L^{1}(\mathbb{R}^{+})\). We have \(f(t,(1+t^{\frac{5}{3}})u)\leq\varphi_{r}(t)\) for \(u\leq r\) and \(t\in \mathbb{R}^{+}\). Then f is an \(L^{1}\)-Carathéodory function and \(\int_{0}^{+\infty}q(s)\varphi_{r}(s)\,\mathrm{d}s\approx1.088r^{2}<+\infty\). Let \(k=2\), we have \(L=1+\frac{5}{3}\sum_{i=1}^{\infty}g(\xi_{i})=1+\frac {5\pi^{2}}{18}\), \(\rho_{1}=\frac{\Gamma(\frac{8}{3})}{L+\frac{5}{3}}\approx 0.278\), \(\rho_{2}=\frac{16\Gamma(\frac{8}{3})(1+2\sqrt{2})^{2}}{ \int_{\frac{1}{2}}^{2}e^{-s}\,\mathrm{d}s}\approx748.814\).

$$f^{0}=\limsup_{u\rightarrow0^{+}}\sup_{t\in\mathbb{R}^{+}} \frac {f(t,(1+t^{\frac{5}{3}})u)}{u} =\limsup_{u\rightarrow0^{+}}\sup_{t\in\mathbb{R}^{+}} \frac {e^{-t^{\frac{5}{3}}}(1+t^{\frac{5}{3}})^{2}u^{2}}{u} =0< \rho_{1}, $$

and

$$f_{\infty}=\liminf_{u\rightarrow+\infty}\inf_{t\in[\frac {1}{2},2]} \frac{f(t,(1+t^{\frac{5}{3}})u)}{u} =\liminf_{u\rightarrow+\infty}\inf_{t\in[\frac{1}{2},2]} \frac {e^{-t^{\frac{5}{3}}}(1+t^{\frac{5}{3}})^{2}u^{2}}{u} =+\infty>\rho_{2}. $$
  1. (1)

    Choose \(r_{1}=0.18\), let \(\lambda<\rho_{1}r_{1}\approx0.05\). We can obtain \(f(t,(1+t^{\frac{5}{3}})u)<\rho_{1}r_{1}\) for \(u\in(0,0.18]\), \(t\in \mathbb{R}^{+}\). By Theorems 4.1 and 4.2, boundary value problem (6.1) has a positive solution for \(\lambda\in[0,0.05]\).

  2. (2)

    Choose \(r_{2}=1\text{,}100\), let \(\lambda>\Gamma(\frac{5}{3})(1+2^{\frac {5}{3}})r_{2}\approx4\text{,}145.66\). We have \(f(t,(1+t^{\frac{5}{3}})u)>\rho _{2}r_{2}\) for \(u\in[1\text{,}100,+\infty)\) and \(t\in[\frac{1}{2},2]\). By Theorems 4.1 and 4.3, boundary value problem (6.1) does not have a positive solution for \(\lambda\in(4\text{,}200,+\infty)\).

  3. (3)

    According to Theorem 5.1, we know that there exists a constant \(\lambda^{*}\in(0.05,4\text{,}200)\) such that boundary value problem (6.1) has at least one positive solution for each \(\lambda\in [0,\lambda^{*}]\), two positive solutions for any \(\lambda\in(0,\lambda ^{*})\), and no positive solutions for \(\lambda\in(\lambda^{*},+\infty)\).

Example 6.2

We consider the boundary value problem

$$ \textstyle\begin{cases} D_{0^{+}}^{\frac{5}{2}}u(t)+e^{-t}f(t,u(t))=0,\quad t\in(0,+\infty), \\ u(0)= D_{0^{+}}^{\frac{3}{2}}u(+\infty)=0, \\ D_{0^{+}}^{\frac{1}{2}}u(0) =\sum_{i=1}^{\infty}\frac{1}{(i-1)!}D_{0^{+}}^{\frac{3}{2}} u(i)+0.1, \end{cases} $$
(6.2)

where

$$ f(t,u)= \textstyle\begin{cases} e^{-\frac{t}{2}}\frac{u}{10(1+t^{\frac{3}{2}})},& 0 \leq u \leq1, \\ e^{-\frac{t}{2}} (\frac{u}{10(1+t^{\frac{3}{2}})}+10^{4}(u-1) ),& 1\leq u \leq2, \\ e^{-\frac{t}{2}} (\frac{u}{10(1+t^{\frac{3}{2}})}+10^{4} ),& u\geq2. \end{cases} $$

In this case, \(\delta=\frac{5}{2}\), \(q(t)=e^{-t}\), \(g(t)=\frac {1}{(t-1)!}\), \(\xi_{i}=i\). Then \(\sum_{i=1}^{\infty}g(\xi_{i})=e\) is convergent. Choose \(\varphi_{r}(t)=(\frac{r(1+t^{\frac {3}{2}})}{10}+10^{4})e^{-\frac{t}{2}}\in L^{1}(\mathbb{R}^{+})\). We have \(f(t,(1+t^{\frac{3}{2}})u)\leq\varphi_{r}(t)\) for \(u\leq r\) and \(t\in\mathbb{R}^{+}\). It is easy to show that f is an \(L^{1}\)-Carathéodory function and \(\int_{0}^{+\infty}q(s)\varphi _{r}(s)\,\mathrm{d}s\approx\frac{20\text{,}000}{3}+0.115r<+\infty\).

Take \(a=1\), \(b=2\), \(c=d=10^{5}\) and \(k=2\). We can get that \(L=1+\frac{3}{2}\sum_{i=1}^{\infty}g(\xi_{i})=1+1.5e\), \(\rho_{1}=\frac{\Gamma(\frac{5}{2})}{L+\delta-1}\approx0.202\), \(\rho_{2}=\frac{16\Gamma (\frac{5}{2})(1+2\sqrt{2})^{2}}{ \int_{\frac{1}{2}}^{2}e^{-s}\,\mathrm{d}s}\approx661.601\), \(\lambda=0.1< a\rho_{1}\approx0.202\).

Then the function f satisfies

$$\begin{aligned}& f\bigl(t,\bigl(1+t^{\frac{3}{2}}\bigr)u\bigr)< \frac{1}{10}< a \rho_{1}\approx0.202\quad \mbox{for } t\in\mathbb{R}^{+},0 \leq u\leq1 ; \\& f\bigl(t,\bigl(1+t^{\frac{3}{2}}\bigr)u\bigr)>3\text{,}678.79>b\rho_{2} \approx1\text{,}323.2\quad \mbox{for } \frac{1}{2}\leq t\leq2,2\leq u \leq10^{5} ; \\& f\bigl(t,\bigl(1+t^{\frac{3}{2}}\bigr)u\bigr)< 2\times10^{4}< c \rho_{1}\approx2.021\times10^{4}\quad \mbox{for } t\in \mathbb{R}^{+},0\leq u\leq10^{5} . \end{aligned}$$

Then, by Theorem 5.3, we know that boundary value problem (6.2) has at least three positive solutions \(u_{1}\), \(u_{2}\) and \(u_{3}\) such that \(\|u_{1}\|<1\), \(2<\gamma(u_{2})\), \(1<\|u_{3}\|\) and \(\gamma(u_{3})<2\).