Skip to main content

Advertisement

Log in

MYRbase: analysis of genome-wide glycine myristoylation enlarges the functional spectrum of eukaryotic myristoylated proteins

  • Software
  • Published:
Genome Biology Aims and scope Submit manuscript

Abstract

We evaluated the evolutionary conservation of glycine myristoylation within eukaryotic sequences. Our large-scale cross-genome analyses, available as MYRbase, show that the functional spectrum of myristoylated proteins is currently largely underestimated. We give experimental evidence for in vitro myristoylation of selected predictions. Furthermore, we classify five membrane-attachment factors that occur most frequently in combination with, or even replacing, myristoyl anchors, as some protein family examples show.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Gordon JI, Duronio RJ, Rudnick DA, Adams SP, Gokel GW: Protein N-myristoylation. J Biol Chem. 1991, 266: 8647-8650.

    PubMed  CAS  Google Scholar 

  2. Boutin JA: Myristoylation. Cell Signal. 1997, 9: 15-35. 10.1016/S0898-6568(96)00100-3.

    PubMed  CAS  Google Scholar 

  3. Farazi TA, Waksman G, Gordon JI: The biology and enzymology of protein n-myristoylation. J Biol Chem. 2001, 276: 39501-39504. 10.1074/jbc.R100042200.

    PubMed  CAS  Google Scholar 

  4. Nimchuk Z, Marois E, Kjemtrup S, Leister RT, Katagiri F, Dangl JL: Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several type III effector proteins from Pseudomonas syringae. Cell. 2000, 101: 353-363. 10.1016/S0092-8674(00)80846-6.

    PubMed  CAS  Google Scholar 

  5. McCabe JB, Berthiaume LG: N-terminal protein acylation confers localization to cholesterol, sphingolipid-enriched membranes but not to lipid rafts/caveolae. Mol Biol Cell. 2001, 12: 3601-3617.

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Resh MD: Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta. 1999, 1451: 1-16. 10.1016/S0167-4889(99)00075-0.

    PubMed  CAS  Google Scholar 

  7. McCabe JB, Berthiaume LG: Functional roles for fatty acylated amino-terminal domains in subcellular localization. Mol Biol Cell. 1999, 10: 3771-3786.

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Hayashi N, Matsubara M, Jinbo Y, Titani K, Izumi Y, Matsushima N: Nef of HIV-1 interacts directly with calcium-bound calmodulin. Protein Sci. 2002, 11: 529-537. 10.1110/ps.23702.

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Hayashi N, Izumi Y, Titani K, Matsushima N: The binding of myristoylated N-terminal nonapeptide from neuro-specific protein CAP-23/NAP-22 to calmodulin does not induce the globular structure observed for the calmodulin-nonmyristylated peptide complex. Protein Sci. 2000, 9: 1905-1913.

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Ames JB, Tanaka T, Stryer L, Ikura M: Portrait of a myristoyl switch protein. Curr Opin Struct Biol. 1996, 6: 432-438. 10.1016/S0959-440X(96)80106-0.

    PubMed  CAS  Google Scholar 

  11. McLaughlin S, Aderem A: The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem Sci. 1995, 20: 272-276. 10.1016/S0968-0004(00)89042-8.

    PubMed  CAS  Google Scholar 

  12. Zhou W, Resh MD: Differential membrane binding of the human immunodeficiency virus type 1 matrix protein. J Virol. 1996, 70: 8540-8548.

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Hantschel O, Nagar B, Guettler S, Kretzschmar J, Dorey K, Kuriyan J, Superti-Furga G: A myristoyl/phosphotyrosine switch regulates c-Abl. Cell. 2003, 112: 845-857. 10.1016/S0092-8674(03)00191-0.

    PubMed  CAS  Google Scholar 

  14. Raju RV, Datla RS, Moyana TN, Kakkar R, Carlsen SA, Sharma RK: N-myristoyltransferase. Mol Cell Biochem. 2000, 204: 135-155. 10.1023/A:1007012622030.

    Google Scholar 

  15. Maurer-Stroh S, Eisenhaber B, Eisenhaber F: N-terminal N-myristoylation of proteins: refinement of the sequence motif and its taxon-specific differences. J Mol Biol. 2002, 317: 523-540. 10.1006/jmbi.2002.5425.

    PubMed  CAS  Google Scholar 

  16. Maurer-Stroh S, Eisenhaber B, Eisenhaber F: N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence. J Mol Biol. 2002, 317: 541-557. 10.1006/jmbi.2002.5426.

    PubMed  CAS  Google Scholar 

  17. NMT: MyristoylCoA:Protein N-Myristoyltransferase. [http://mendel.imp.univie.ac.at/myristate]

  18. MYRbase. [http://mendel.imp.univie.ac.at/myristate/myrbase]

  19. Li W, Jaroszewski L, Godzik A: Tolerating some redundancy significantly speeds up clustering of large protein databases. Bioinformatics. 2002, 18: 77-82. 10.1093/bioinformatics/18.1.77.

    PubMed  CAS  Google Scholar 

  20. Li W, Jaroszewski L, Godzik A: Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics. 2001, 17: 282-283. 10.1093/bioinformatics/17.3.282.

    PubMed  CAS  Google Scholar 

  21. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, et al: The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 2003, 31: 365-370. 10.1093/nar/gkg095.

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Marchler-Bauer A, Anderson JB, DeWeese-Scott C, Fedorova ND, Geer LY, He S, Hurwitz DI, Jackson JD, Jacobs AR, Lanczycki CJ, et al: CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res. 2003, 31: 383-387. 10.1093/nar/gkg087.

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Boisson B, Giglione C, Meinnel T: Unexpected protein families including cell defense components feature in the N-myristoylome of a higher eukaryote. J Biol Chem. 2003, 278: 43418-43429. 10.1074/jbc.M307321200.

    PubMed  CAS  Google Scholar 

  25. Chen CA, Manning DR: Regulation of G proteins by covalent modification. Oncogene. 2001, 20: 1643-1652. 10.1038/sj.onc.1204185.

    PubMed  CAS  Google Scholar 

  26. Ueda T, Yamaguchi M, Uchimiya H, Nakano A: Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J. 2001, 20: 4730-4741. 10.1093/emboj/20.17.4730.

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Gonzalez E, Kou R, Lin AJ, Golan DE, Michel T: Subcellular targeting and agonist-induced site-specific phosphorylation of endothelial nitric-oxide synthase. J Biol Chem. 2002, 277: 39554-39560. 10.1074/jbc.M207299200.

    PubMed  CAS  Google Scholar 

  28. Furuya T, Kashuba C, Docampo R, Moreno SN: A novel phosphatidylinositol-phospholipase C of Trypanosoma cruzi that is lipid modified and activated during trypomastigote to amastigote differentiation. J Biol Chem. 2000, 275: 6428-6438. 10.1074/jbc.275.9.6428.

    PubMed  CAS  Google Scholar 

  29. Maroun CR, Naujokas MA, Park M: Membrane targeting of Grb2-associated Binder-1 (Gab1) scaffolding protein through Src myristoylation sequence substitutes for Gab1 pleckstrin homology domain and switches an epidermal growth factor response to an invasive morphogenic program. Mol Biol Cell. 2003, 14: 1691-1708. 10.1091/mbc.E02-06-0352.

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000, 1: 31-39. 10.1038/35036052.

    PubMed  CAS  Google Scholar 

  31. Denny PW, Gokool S, Russell DG, Field MC, Smith DF: Acylation-dependent protein export in Leishmania. J Biol Chem. 2000, 275: 11017-11025. 10.1074/jbc.275.15.11017.

    PubMed  CAS  Google Scholar 

  32. Maurer-Stroh S, Washietl S, Eisenhaber F: Protein prenyltransferases. Genome Biol. 2003, 4: 212-10.1186/gb-2003-4-4-212.

    PubMed  PubMed Central  Google Scholar 

  33. Maurer-Stroh S, Washietl S, Eisenhaber F: Protein prenyltransferases: anchor size, pseudogenes and parasites. Biol Chem. 2003, 384: 977-989. 10.1515/BC.2003.110.

    PubMed  CAS  Google Scholar 

  34. Chatterjee S, Mayor S: The GPI-anchor and protein sorting. Cell Mol Life Sci. 2001, 58: 1969-1987. 10.1007/PL00000831.

    PubMed  CAS  Google Scholar 

  35. Eisenhaber B, Maurer-Stroh S, Novatchkova M, Schneider G, Eisenhaber F: Enzymes and auxiliary factors for GPI lipid anchor biosynthesis and post-translational transfer to proteins. BioEssays. 2003, 25: 367-385. 10.1002/bies.10254.

    PubMed  CAS  Google Scholar 

  36. Murray D, Hermida-Matsumoto L, Buser CA, Tsang J, Sigal CT, Ben Tal N, Honig B, Resh MD, McLaughlin S: Electrostatics and the membrane association of Src: theory and experiment. Biochemistry. 1998, 37: 2145-2159. 10.1021/bi972012b.

    PubMed  CAS  Google Scholar 

  37. McLaughlin S, Wang J, Gambhir A, Murray D: PIP(2) and proteins: interactions, organization, and information flow. Annu Rev Biophys Biomol Struct. 2002, 31: 151-175. 10.1146/annurev.biophys.31.082901.134259.

    PubMed  CAS  Google Scholar 

  38. Nourry C, Grant SG, Borg JP: PDZ domain proteins: plug and play!. Science Signal Transduction Knowledge Environment. 2003, RE7-

    Google Scholar 

  39. Gallina A, Milanesi G: Transmembrane translocation of a myristylated protein amino terminus. Biochem Biophys Res Commun. 1993, 195: 637-642. 10.1006/bbrc.1993.2093.

    PubMed  CAS  Google Scholar 

  40. Dawe S, Duncan R: The S4 genome segment of baboon reovirus is bicistronic and encodes a novel fusion-associated small transmembrane protein. J Virol. 2002, 76: 2131-2140. 10.1128/jvi.76.5.2131-2140.2002.

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Bijlmakers MJ, Marsh M: The on-off story of protein palmitoylation. Trends Cell Biol. 2003, 13: 32-42. 10.1016/S0962-8924(02)00008-9.

    PubMed  CAS  Google Scholar 

  42. Eddy SR: Profile hidden Markov models. Bioinformatics. 1998, 14: 755-763. 10.1093/bioinformatics/14.9.755.

    PubMed  CAS  Google Scholar 

  43. Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer EL: The Pfam protein families database. Nucleic Acids Res. 2000, 28: 263-266. 10.1093/nar/28.1.263.

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Hassanin A, Golub R, Lewis SM, Wu GE: Evolution of the recombination signal sequences in the Ig heavy-chain variable region locus of mammals. Proc Natl Acad Sci USA. 2000, 97: 11415-11420. 10.1073/pnas.97.21.11415.

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Zha J, Weiler S, Oh KJ, Wei MC, Korsmeyer SJ: Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science. 2000, 290: 1761-1765. 10.1126/science.290.5497.1761.

    PubMed  CAS  Google Scholar 

  46. Nielsen H, Brunak S, von Heijne G: Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng. 1999, 12: 3-9. 10.1093/protein/12.1.3.

    PubMed  CAS  Google Scholar 

  47. Ping J, Schildbach JF, Shaw SY, Quertermous T, Novotny J, Bruccoleri R, Margolies MN: Effect of heavy chain signal peptide mutations and NH2-terminal chain length on binding of anti-digoxin antibodies. J Biol Chem. 1993, 268: 23000-23007.

    PubMed  CAS  Google Scholar 

  48. Pillai S, Baltimore D: Myristoylation and the post-translational acquisition of hydrophobicity by the membrane immunoglobulin heavy-chain polypeptide in B lymphocytes. Proc Natl Acad Sci USA. 1987, 84: 7654-7658.

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Stevenson FT, Bursten SL, Locksley RM, Lovett DH: Myristyl acylation of the tumor necrosis factor alpha precursor on specific lysine residues. J Exp Med. 1992, 176: 1053-1062. 10.1084/jem.176.4.1053.

    PubMed  CAS  Google Scholar 

  50. Stevenson FT, Bursten SL, Fanton C, Locksley RM, Lovett DH: The 31-kDa precursor of interleukin 1 alpha is myristoylated on specific lysines within the 16-kDa N-terminal propiece. Proc Natl Acad Sci USA. 1993, 90: 7245-7249.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Meffre E, Casellas R, Nussenzweig MC: Antibody regulation of B cell development. Nat Immunol. 2000, 1: 379-385. 10.1038/80816.

    PubMed  CAS  Google Scholar 

  52. Dangl JL, Jones JD: Plant pathogens and integrated defence responses to infection. Nature. 2001, 411: 826-833. 10.1038/35081161.

    PubMed  CAS  Google Scholar 

  53. Collmer A, Lindeberg M, Petnicki-Ocwieja T, Schneider DJ, Alfano JR: Genomic mining type III secretion system effectors in Pseudomonas syringae yields new picks for all TTSS prospectors. Trends Microbiol. 2002, 10: 462-469. 10.1016/S0966-842X(02)02451-4.

    PubMed  CAS  Google Scholar 

  54. Boehm U, Guethlein L, Klamp T, Ozbek K, Schaub A, Futterer A, Pfeffer K, Howard JC: Two families of GTPases dominate the complex cellular response to IFN-gamma. J Immunol. 1998, 161: 6715-6723.

    PubMed  CAS  Google Scholar 

  55. Zerrahn J, Schaible UE, Brinkmann V, Guhlich U, Kaufmann SH: The IFN-inducible Golgi- and endoplasmic reticulum-associated 47-kDa GTPase IIGP is transiently expressed during listeriosis. J Immunol. 2002, 168: 3428-3436.

    PubMed  CAS  Google Scholar 

  56. Uthaiah RC, Praefcke GJ, Howard JC, Herrmann C: IIGP1, an interferon-gamma-inducible 47-kDa GTPase of the mouse, showing cooperative enzymatic activity and GTP-dependent multimerization. J Biol Chem. 2003, 278: 29336-29343. 10.1074/jbc.M211973200.

    PubMed  CAS  Google Scholar 

  57. Besse S, Rebouillat D, Marie I, Puvion-Dutilleul F, Hovanessian AG: Ultrastructural localization of interferon-inducible double-stranded RNA-activated enzymes in human cells. Exp Cell Res. 1998, 239: 379-392. 10.1006/excr.1997.3908.

    PubMed  Google Scholar 

  58. Cai SY, Babbitt RW, Marchesi VT: A mutant deubiquitinating enzyme (Ubp-M) associates with mitotic chromosomes and blocks cell division. Proc Natl Acad Sci USA. 1999, 96: 2828-2833. 10.1073/pnas.96.6.2828.

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Mimnaugh EG, Kayastha G, McGovern NB, Hwang SG, Marcu MG, Trepel J, Cai SY, Marchesi VT, Neckers L: Caspase-dependent deubiquitination of monoubiquitinated nucleosomal histone H2A induced by diverse apoptogenic stimuli. Cell Death Differ. 2001, 8: 1182-1196. 10.1038/sj.cdd.4400924.

    PubMed  CAS  Google Scholar 

  60. D'Andrea A, Pellman D: Deubiquitinating enzymes: a new class of biological regulators. Crit Rev Biochem Mol Biol. 1998, 33: 337-352. 10.1080/10409239891204251.

    PubMed  Google Scholar 

  61. Kaitna S, Schnabel H, Schnabel R, Hyman AA, Glotzer M: A ubiquitin C-terminal hydrolase is required to maintain osmotic balance and execute actin-dependent processes in the early C. elegans embryo. J Cell Sci. 2002, 115: 2293-2302.

    PubMed  CAS  Google Scholar 

  62. Kimura Y, Saeki Y, Yokosawa H, Polevoda B, Sherman F, Hirano H: N-terminal modifications of the 19S regulatory particle subunits of the yeast proteasome. Arch Biochem Biophys. 2003, 409: 341-348. 10.1016/S0003-9861(02)00639-2.

    PubMed  CAS  Google Scholar 

  63. Lai EC: Protein degradation: four E3s for the Notch pathway. Curr Biol. 2002, 12: R74-R78. 10.1016/S0960-9822(01)00679-0.

    PubMed  CAS  Google Scholar 

  64. Pavlopoulos E, Pitsouli C, Klueg KM, Muskavitch MA, Moschonas NK, Delidakis C: neuralized encodes a peripheral membrane protein involved in delta signaling and endocytosis. Dev Cell. 2001, 1: 807-816. 10.1016/S1534-5807(01)00093-4.

    PubMed  CAS  Google Scholar 

  65. He L, Lu XY, Jolly AF, Eldridge AG, Watson SJ, Jackson PK, Barsh GS, Gunn TM: Spongiform degeneration in mahoganoid mutant mice. Science. 2003, 299: 710-712. 10.1126/science.1079694.

    PubMed  CAS  Google Scholar 

  66. Kunkele KP, Heins S, Dembowski M, Nargang FE, Benz R, Thieffry M, Walz J, Lill R, Nussberger S, Neupert W: The preprotein translocation channel of the outer membrane of mitochondria. Cell. 1998, 93: 1009-1019. 10.1016/S0092-8674(00)81206-4.

    PubMed  CAS  Google Scholar 

  67. Ahting U, Thieffry M, Engelhardt H, Hegerl R, Neupert W, Nussberger S: Tom40, the pore-forming component of the protein-conducting TOM channel in the outer membrane of mitochondria. J Cell Biol. 2001, 153: 1151-1160. 10.1083/jcb.153.6.1151.

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Gabriel K, Egan B, Lithgow T: Tom40, the import channel of the mitochondrial outer membrane, plays an active role in sorting imported proteins. EMBO J. 2003, 22: 2380-2386. 10.1093/emboj/cdg229.

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Suzuki H, Okazawa Y, Komiya T, Saeki K, Mekada E, Kitada S, Ito A, Mihara K: Characterization of rat TOM40, a central component of the preprotein translocase of the mitochondrial outer membrane. J Biol Chem. 2000, 275: 37930-37936. 10.1074/jbc.M006558200.

    PubMed  CAS  Google Scholar 

  70. Steiner H, Kispal G, Zollner A, Haid A, Neupert W, Lill R: Heme binding to a conserved Cys-Pro-Val motif is crucial for the catalytic function of mitochondrial heme lyases. J Biol Chem. 1996, 271: 32605-32611. 10.1074/jbc.271.40.24458.

    PubMed  CAS  Google Scholar 

  71. Dumont ME, Cardillo TS, Hayes MK, Sherman F: Role of cytochrome c heme lyase in mitochondrial import and accumulation of cytochrome c in Saccharomyces cerevisiae. Mol Cell Biol. 1991, 11: 5487-5496.

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Prakash SK, Cormier TA, McCall AE, Garcia JJ, Sierra R, Haupt B, Zoghbi HY, Van Den Veyver IB: Loss of holocytochrome c-type synthetase causes the male lethality of X-linked dominant microphthalmia with linear skin defects (MLS) syndrome. Hum Mol Genet. 2002, 11: 3237-3248. 10.1093/hmg/11.25.3237.

    PubMed  CAS  Google Scholar 

  73. Kondo M, Ji L, Kamibayashi C, Tomizawa Y, Randle D, Sekido Y, Yokota J, Kashuba V, Zabarovsky E, Kuzmin I, et al: Overexpression of candidate tumor suppressor gene FUS1 isolated from the 3p21.3 homozygous deletion region leads to G1 arrest and growth inhibition of lung cancer cells. Oncogene. 2001, 20: 6258-6262. 10.1038/sj.onc.1204832.

    PubMed  CAS  Google Scholar 

  74. Ji L, Nishizaki M, Gao B, Burbee D, Kondo M, Kamibayashi C, Xu K, Yen N, Atkinson EN, Fang B, et al: Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo. Cancer Res. 2002, 62: 2715-2720.

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Takai D, Jones PA: The CpG island searcher: a new WWW resource. In Silico Biol. 2003, 3: 235-240.

    PubMed  CAS  Google Scholar 

  76. Melki JR, Vincent PC, Clark SJ: Cancer-specific region of hypermethylation identified within the HIC1 putative tumour suppressor gene in acute myeloid leukaemia. Leukemia. 1999, 13: 877-883. 10.1038/sj/leu/2401401.

    PubMed  CAS  Google Scholar 

  77. Burgoyne RD, Weiss JL: The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J. 2001, 353: 1-12. 10.1042/0264-6021:3530001.

    PubMed  CAS  PubMed Central  Google Scholar 

  78. O'Callaghan DW, Ivings L, Weiss JL, Ashby MC, Tepikin AV, Burgoyne RD: Differential use of myristoyl groups on neuronal calcium sensor proteins as a determinant of spatio-temporal aspects of Ca2+ signal transduction. J Biol Chem. 2002, 277: 14227-14237. 10.1074/jbc.M111750200.

    PubMed  Google Scholar 

  79. An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KI, Strassle BW, Trimmer JS, Rhodes KJ: Modulation of A-type potassium channels by a family of calcium sensors. Nature. 2000, 403: 553-556. 10.1038/35000592.

    PubMed  CAS  Google Scholar 

  80. Martens JR, Sakamoto N, Sullivan SA, Grobaski TD, Tamkun MM: Isoform-specific localization of voltage-gated K+ channels to distinct lipid raft populations. Targeting of Kv1.5 to caveolae. J Biol Chem. 2001, 276: 8409-8414. 10.1074/jbc.M009948200.

    PubMed  CAS  Google Scholar 

  81. Zacharias DA, Violin JD, Newton AC, Tsien RY: Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science. 2002, 296: 913-916. 10.1126/science.1068539.

    PubMed  CAS  Google Scholar 

  82. Takimoto K, Yang EK, Conforti L: Palmitoylation of KChIP splicing variants is required for efficient cell surface expression of Kv4.3 channels. J Biol Chem. 2002, 277: 26904-26911. 10.1074/jbc.M203651200.

    PubMed  CAS  Google Scholar 

  83. Delling M, Wischmeyer E, Dityatev A, Sytnyk V, Veh RW, Karschin A, Schachner M: The neural cell adhesion molecule regulates cell-surface delivery of G-protein-activated inwardly rectifying potassium channels via lipid rafts. J Neurosci. 2002, 22: 7154-7164.

    PubMed  CAS  Google Scholar 

  84. Dascal N, Doupnik CA, Ivanina T, Bausch S, Wang W, Lin C, Garvey J, Chavkin C, Lester HA, Davidson N: Inhibition of function in Xenopus oocytes of the inwardly rectifying G-protein-activated atrial K channel (GIRK1) by overexpression of a membrane-attached form of the C-terminal tail. Proc Natl Acad Sci USA. 1995, 92: 6758-6762.

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Ma D, Zerangue N, Lin YF, Collins A, Yu M, Jan YN, Jan LY: Role of ER export signals in controlling surface potassium channel numbers. Science. 2001, 291: 316-319. 10.1126/science.291.5502.316.

    PubMed  CAS  Google Scholar 

  86. Stockklausner C, Ludwig J, Ruppersberg JP, Klocker N: A sequence motif responsible for ER export and surface expression of Kir2.0 inward rectifier K(+) channels. FEBS Lett. 2001, 493: 129-133. 10.1016/S0014-5793(01)02286-4.

    PubMed  CAS  Google Scholar 

  87. Stockklausner C, Klocker N: Surface expression of inward rectifier potassium channels is controlled by selective Golgi export. J Biol Chem. 2003, 278: 17000-17005. 10.1074/jbc.M212243200.

    PubMed  CAS  Google Scholar 

  88. Schulze D, Krauter T, Fritzenschaft H, Soom M, Baukrowitz T: Phosphatidylinositol 4,5-bisphosphate (PIP2) modulation of ATP and pH sensitivity in Kir channels:A tale of an active and a silent PIP2 site in the N-terminus. J Biol Chem. 2003, 278: 10500-10505. 10.1074/jbc.M208413200.

    PubMed  CAS  Google Scholar 

  89. Simons K, Ikonen E: Functional rafts in cell membranes. Nature. 1997, 387: 569-572. 10.1038/42408.

    PubMed  CAS  Google Scholar 

  90. Edidin M: The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct. 2003, 32: 257-283. 10.1146/annurev.biophys.32.110601.142439.

    PubMed  CAS  Google Scholar 

  91. von Haller PD, Donohoe S, Goodlett DR, Aebersold R, Watts JD: Mass spectrometric characterization of proteins extracted from Jurkat T cell detergent-resistant membrane domains. Proteomics. 2001, 1: 1010-1021. 10.1002/1615-9861(200108)1:8<1010::AID-PROT1010>3.3.CO;2-C.

    PubMed  CAS  Google Scholar 

  92. Nebl T, Pestonjamasp KN, Leszyk JD, Crowley JL, Oh SW, Luna EJ: Proteomic analysis of a detergent-resistant membrane skeleton from neutrophil plasma membranes. J Biol Chem. 2002, 277: 43399-43409. 10.1074/jbc.M205386200.

    PubMed  CAS  Google Scholar 

  93. Li N, Mak A, Richards DP, Naber C, Keller BO, Li L, Shaw AR: Monocyte lipid rafts contain proteins implicated in vesicular trafficking and phagosome formation. Proteomics. 2003, 3: 536-548. 10.1002/pmic.200390067.

    PubMed  CAS  Google Scholar 

  94. Bini L, Pacini S, Liberatori S, Valensin S, Pellegrini M, Raggiaschi R, Pallini V, Baldari CT: Extensive temporally regulated reorganization of the lipid raft proteome following T-cell antigen receptor triggering. Biochem J. 2003, 369: 301-309. 10.1042/BJ20020503.

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Moffett S, Brown DA, Linder ME: Lipid-dependent targeting of G proteins into rafts. J Biol Chem. 2000, 275: 2191-2198. 10.1074/jbc.275.3.2191.

    PubMed  CAS  Google Scholar 

  96. Kovarova M, Tolar P, Arudchandran R, Draberova L, Rivera J, Draber P: Structure-function analysis of Lyn kinase association with lipid rafts and initiation of early signaling events after Fcepsilon receptor I aggregation. Mol Cell Biol. 2001, 21: 8318-8328. 10.1128/MCB.21.24.8318-8328.2001.

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Terashita A, Funatsu N, Umeda M, Shimada Y, Ohno-Iwashita Y, Epand RM, Maekawa S: Lipid binding activity of a neuron-specific protein NAP-22 studied in vivo and in vitro. J Neurosci Res. 2002, 70: 172-179. 10.1002/jnr.10407.

    PubMed  CAS  Google Scholar 

  98. Sowa G, Pypaert M, Sessa WC: Distinction between signaling mechanisms in lipid rafts vs. caveolae. Proc Natl Acad Sci USA. 2001, 98: 14072-14077. 10.1073/pnas.241409998.

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Marchand S, Devillers-Thiery A, Pons S, Changeux JP, Cartaud J: Rapsyn escorts the nicotinic acetylcholine receptor along the exocytic pathway via association with lipid rafts. J Neurosci. 2002, 22: 8891-8901.

    PubMed  CAS  Google Scholar 

  100. Lafont F, Lecat S, Verkade P, Simons K: Annexin XIIIb associates with lipid microdomains to function in apical delivery. J Cell Biol. 1998, 142: 1413-1427. 10.1083/jcb.142.6.1413.

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Arbuzova A, Schmitz AA, Vergeres G: Cross-talk unfolded: MARCKS proteins. Biochem J. 2002, 362: 1-12. 10.1042/0264-6021:3620001.

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Laux T, Fukami K, Thelen M, Golub T, Frey D, Caroni P: GAP43, MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J Cell Biol. 2000, 149: 1455-1472. 10.1083/jcb.149.7.1455.

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Wang JK, Kiyokawa E, Verdin E, Trono D: The Nef protein of HIV-1 associates with rafts and primes T cells for activation. Proc Natl Acad Sci USA. 2000, 97: 394-399. 10.1073/pnas.97.1.394.

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Lindwasser OW, Resh MD: Multimerization of human immunodeficiency virus type 1 Gag promotes its localization to barges, raft-like membrane microdomains. J Virol. 2001, 75: 7913-7924. 10.1128/JVI.75.17.7913-7924.2001.

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Dreger M, Bengtsson L, Schoneberg T, Otto H, Hucho F: Nuclear envelope proteomics: novel integral membrane proteins of the inner nuclear membrane. Proc Natl Acad Sci USA. 2001, 98: 11943-11948. 10.1073/pnas.211201898.

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Takasaki A, Hayashi N, Matsubara M, Yamauchi E, Taniguchi H: Identification of the calmodulin-binding domain of neuron-specific protein kinase C substrate protein CAP-22/NAP-22. Direct involvement of protein myristoylation in calmodulin-target protein interaction. J Biol Chem. 1999, 274: 11848-11853. 10.1074/jbc.274.17.11848.

    PubMed  CAS  Google Scholar 

  107. Gunaratne RS, Sajid M, Ling IT, Tripathi R, Pachebat JA, Holder AA: Characterization of N-myristoyltransferase from Plasmodium falciparum. Biochem J. 2000, 348: 459-463. 10.1042/0264-6021:3480459.

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997, 18: 2714-2723. 10.1002/elps.1150181505.

    PubMed  CAS  Google Scholar 

  109. Randazzo PA, Nie Z, Miura K, Hsu VW: Molecular aspects of the cellular activities of ADP-ribosylation factors. Science Signal Transduction Knowledge Environment. 2000, RE1-

    Google Scholar 

  110. Lin CY, Li CC, Huang PH, Lee FJ: A developmentally regulated ARF-like 5 protein (ARL5), localized to nuclei and nucleoli, interacts with heterochromatin protein 1. J Cell Sci. 2002, 115: 4433-4445. 10.1242/jcs.00123.

    PubMed  CAS  Google Scholar 

  111. Lu SX, Hrabak EM: An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum. Plant Physiol. 2002, 128: 1008-1021. 10.1104/pp.010770.

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Martin GB, Bogdanove AJ, Sessa G: Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol. 2003, 54: 23-61. 10.1146/annurev.arplant.54.031902.135035.

    PubMed  CAS  Google Scholar 

  113. Pepperkok R, Hotz-Wagenblatt A, Konig N, Girod A, Bossemeyer D, Kinzel V: Intracellular distribution of mammalian protein kinase A catalytic subunit altered by conserved Asn2 deamidation. J Cell Biol. 2000, 148: 715-726. 10.1083/jcb.148.4.715.

    PubMed  CAS  PubMed Central  Google Scholar 

  114. Fraser ID, Tavalin SJ, Lester LB, Langeberg LK, Westphal AM, Dean RA, Marrion NV, Scott JD: A novel lipid-anchored A-kinase anchoring protein facilitates cAMP-responsive membrane events. EMBO J. 1998, 17: 2261-2272. 10.1093/emboj/17.8.2261.

    PubMed  CAS  PubMed Central  Google Scholar 

  115. Vaandrager AB, Smolenski A, Tilly BC, Houtsmuller AB, Ehlert EM, Bot AG, Edixhoven M, Boomaars WE, Lohmann SM, de Jonge HR: Membrane targeting of cGMP-dependent protein kinase is required for cystic fibrosis transmembrane conductance regulator Cl-channel activation. Proc Natl Acad Sci USA. 1998, 95: 1466-1471. 10.1073/pnas.95.4.1466.

    PubMed  CAS  PubMed Central  Google Scholar 

  116. Spilker C, Dresbach T, Braunewell KH: Reversible translocation and activity-dependent localization of the calcium-myristoyl switch protein VILIP-1 to different membrane compartments in living hippocampal neurons. J Neurosci. 2002, 22: 7331-7339.

    PubMed  CAS  Google Scholar 

  117. Perrino BA, Martin BA: Ca(2+)- and myristoylation-dependent association of calcineurin with phosphatidylserine. J Biochem (Tokyo). 2001, 129: 835-841.

    CAS  Google Scholar 

  118. Timm S, Titus B, Bernd K, Barroso M: The EF-hand Ca(2+)-binding protein p22 associates with microtubules in an N-myristoylation-dependent manner. Mol Biol Cell. 1999, 10: 3473-3488.

    PubMed  CAS  PubMed Central  Google Scholar 

  119. Hwang JY, Koch KW: Calcium- and myristoyl-dependent properties of guanylate cyclase-activating protein-1 and protein-2. Biochemistry. 2002, 41: 13021-13028. 10.1021/bi026618y.

    PubMed  CAS  Google Scholar 

  120. Stabler SM, Ostrowski LL, Janicki SM, Monteiro MJ: A myristoylated calcium-binding protein that preferentially interacts with the Alzheimer's disease presenilin 2 protein. J Cell Biol. 1999, 145: 1277-1292. 10.1083/jcb.145.6.1277.

    PubMed  CAS  PubMed Central  Google Scholar 

  121. Naik UP, Naik MU: Association of CIB with GPIIb/IIIa during outside-in signaling is required for platelet spreading on fibrinogen. Blood. 2003, 102: 1355-1362. 10.1182/blood-2003-02-0591.

    PubMed  CAS  Google Scholar 

  122. Resh MD: Myristylation and palmitylation of Src family members: the fats of the matter. Cell. 1994, 76: 411-413. 10.1016/0092-8674(94)90104-X.

    PubMed  CAS  Google Scholar 

  123. Lang ML, Chen YW, Shen L, Gao H, Lang GA, Wade TK, Wade WF: IgA Fc receptor (FcalphaR) cross-linking recruits tyrosine kinases, phosphoinositide kinases and serine/threonine kinases to glycolipid rafts. Biochem J. 2002, 364: 517-525. 10.1042/BJ20011696.

    PubMed  CAS  PubMed Central  Google Scholar 

  124. Utsumi T, Sakurai N, Nakano K, Ishisaka R: C-terminal 15 kDa fragment of cytoskeletal actin is posttranslationally N-myristoylated upon caspase-mediated cleavage and targeted to mitochondria. FEBS Lett. 2003, 539: 37-44. 10.1016/S0014-5793(03)00180-7.

    PubMed  CAS  Google Scholar 

  125. Brooks P, Fuertes G, Murray RZ, Bose S, Knecht E, Rechsteiner MC, Hendil KB, Tanaka K, Dyson J, Rivett J: Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochem J. 2000, 346: 155-161. 10.1042/0264-6021:3460155.

    PubMed  CAS  PubMed Central  Google Scholar 

  126. Liu J, Hughes TE, Sessa WC: The first 35 amino acids and fatty acylation sites determine the molecular targeting of endothelial nitric oxide synthase into the Golgi region of cells: a green fluorescent protein study. J Cell Biol. 1997, 137: 1525-1535. 10.1083/jcb.137.7.1525.

    PubMed  CAS  PubMed Central  Google Scholar 

  127. Michel T: Targeting and translocation of endothelial nitric oxide synthase. Braz J Med Biol Res. 1999, 32: 1361-1366. 10.1590/S0100-879X1999001100006.

    PubMed  CAS  Google Scholar 

  128. Barr FA, Puype M, Vandekerckhove J, Warren G: GRASP65, a protein involved in the stacking of Golgi cisternae. Cell. 1997, 91: 253-262. 10.1016/S0092-8674(00)80407-9.

    PubMed  CAS  Google Scholar 

  129. Kuo A, Zhong C, Lane WS, Derynck R: Transmembrane transforming growth factor-alpha tethers to the PDZ domain-containing, Golgi membrane-associated protein p59/GRASP55. EMBO J. 2000, 19: 6427-6439. 10.1093/emboj/19.23.6427.

    PubMed  CAS  PubMed Central  Google Scholar 

  130. Godsel LM, Engman DM: Flagellar protein localization mediated by a calcium-myristoyl/palmitoyl switch mechanism. EMBO J. 1999, 18: 2057-2065. 10.1093/emboj/18.8.2057.

    PubMed  CAS  PubMed Central  Google Scholar 

  131. Borgese N, Aggujaro D, Carrera P, Pietrini G, Bassetti M: A role for N-myristoylation in protein targeting: NADH-cytochrome b5 reductase requires myristic acid for association with outer mitochondrial but not ER membranes. J Cell Biol. 1996, 135: 1501-1513. 10.1083/jcb.135.6.1501.

    PubMed  CAS  Google Scholar 

  132. Ramulu P, Nathans J: Cellular and subcellular localization, N-terminal acylation, and calcium binding of Caenorhabditis elegans protein phosphatase with EF-hands. J Biol Chem. 2001, 276: 25127-25135. 10.1074/jbc.M011712200.

    PubMed  CAS  Google Scholar 

  133. Risinger MA, Korsgren C, Cohen CM: Role of N-myristylation in targeting of band 4.2 (pallidin) in nonerythroid cells. Exp Cell Res. 1996, 229: 421-431. 10.1006/excr.1996.0387.

    PubMed  CAS  Google Scholar 

  134. Stack JH, Herman PK, Schu PV, Emr SD: A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J. 1993, 12: 2195-2204.

    PubMed  CAS  PubMed Central  Google Scholar 

  135. Gelman IH, Lee K, Tombler E, Gordon R, Lin X: Control of cytoskeletal architecture by the src-suppressed C kinase substrate, SSeCKS. Cell Motil Cytoskeleton. 1998, 41: 1-17. 10.1002/(SICI)1097-0169(1998)41:1<1::AID-CM1>3.3.CO;2-W.

    PubMed  CAS  Google Scholar 

  136. Lin SS, Manchester JK, Gordon JI: Sip2, an N-myristoylated beta subunit of Snf1 kinase, regulates aging in Saccharomyces cerevisiae by affecting cellular histone kinase activity, recombination at rDNA loci, and silencing. J Biol Chem. 2003, 278: 13390-13397. 10.1074/jbc.M212818200.

    PubMed  CAS  Google Scholar 

  137. Michiels F, Stam JC, Hordijk PL, van der Kammen RA, Ruuls-Van Stalle L, Feltkamp CA, Collard JG: Regulated membrane localization of Tiam1, mediated by the NH2-terminal pleckstrin homology domain, is required for Rac-dependent membrane ruffling and C-Jun NH2-terminal kinase activation. J Cell Biol. 1997, 137: 387-398. 10.1083/jcb.137.2.387.

    PubMed  CAS  PubMed Central  Google Scholar 

  138. Konno D, Ko JA, Usui S, Hori K, Maruoka H, Inui M, Fujikado T, Tano Y, Suzuki T, Tohyama K, Sobue K: The postsynaptic density and dendritic raft localization of PSD-Zip70, which contains an N-myristoylation sequence and leucine-zipper motifs. J Cell Sci. 2002, 115: 4695-4706. 10.1242/jcs.00127.

    PubMed  CAS  Google Scholar 

  139. Clotet J, Posas F, de Nadal E, Arino J: The NH2-terminal extension of protein phosphatase PPZ1 has an essential functional role. J Biol Chem. 1996, 271: 26349-26355. 10.1074/jbc.271.42.26349.

    PubMed  CAS  Google Scholar 

  140. Sullivan A, Uff CR, Isacke CM, Thorne RF: PACE-1, a novel protein that interacts with the C-terminal domain of ezrin. Exp Cell Res. 2003, 284: 224-238. 10.1016/S0014-4827(02)00054-X.

    PubMed  CAS  Google Scholar 

  141. Li S, Goldberg E: A novel N-terminal domain directs membrane localization of mouse testis-specific calpastatin. Biol Reprod. 2000, 63: 1594-1600. 10.1095/biolreprod63.6.1594.

    PubMed  CAS  Google Scholar 

  142. Rossi EA, Li Z, Feng H, Rubin CS: Characterization of the targeting, binding, and phosphorylation site domains of an A kinase anchor protein and a myristoylated alanine-rich C kinase substrate-like analog that are encoded by a single gene. J Biol Chem. 1999, 274: 27201-27210. 10.1074/jbc.274.38.27201.

    PubMed  CAS  Google Scholar 

  143. Eberle HB, Serrano RL, Fullekrug J, Schlosser A, Lehmann WD, Lottspeich F, Kaloyanova D, Wieland FT, Helms JB: Identification and characterization of a novel human plant pathogenesis-related protein that localizes to lipid-enriched microdomains in the Golgi complex. J Cell Sci. 2002, 115: 827-838.

    PubMed  CAS  Google Scholar 

  144. Babst M, Katzmann DJ, Estepa-Sabal EJ, Meerloo T, Emr SD: Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell. 2002, 3: 271-282. 10.1016/S1534-5807(02)00220-4.

    PubMed  CAS  Google Scholar 

  145. Collavin L, Lazarevic D, Utrera R, Marzinotto S, Monte M, Schneider C: wt p53 dependent expression of a membrane-associated isoform of adenylate kinase. Oncogene. 1999, 18: 5879-5888. 10.1038/sj.onc.1202970.

    PubMed  CAS  Google Scholar 

  146. Walker JE, Arizmendi JM, Dupuis A, Fearnley IM, Finel M, Medd SM, Pilkington SJ, Runswick MJ, Skehel JM: Sequences of 20 subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria. Application of a novel strategy for sequencing proteins using the polymerase chain reaction. J Mol Biol. 1992, 226: 1051-1072. 10.1016/0022-2836(92)91052-Q.

    PubMed  CAS  Google Scholar 

  147. Hanakam F, Albrecht R, Eckerskorn C, Matzner M, Gerisch G: Myristoylated and non-myristoylated forms of the pH sensor protein hisactophilin II: intracellular shuttling to plasma membrane and nucleus monitored in real time by a fusion with green fluorescent protein. EMBO J. 1996, 15: 2935-2943.

    PubMed  CAS  PubMed Central  Google Scholar 

  148. Hunter C, Sung P, Schejter ED, Wieschaus E: Conserved domains of the Nullo protein required for cell-surface localization and formation of adherens junctions. Mol Biol Cell. 2002, 13: 146-157. 10.1091/mbc.01-08-0418.

    PubMed  CAS  PubMed Central  Google Scholar 

  149. Neel VA, Young MW: Igloo, a GAP-43-related gene expressed in the developing nervous system of Drosophila. Development. 1994, 120: 2235-2243.

    PubMed  CAS  Google Scholar 

  150. Quest AF, Harvey DJ, McIlhinney RA: Myristoylated and nonmyristoylated pools of sea urchin sperm flagellar creatine kinase exist side-by-side: myristoylation is necessary for efficient lipid association. Biochemistry. 1997, 36: 6993-7002. 10.1021/bi9629337.

    PubMed  CAS  Google Scholar 

  151. Cserzo M, Eisenhaber F, Eisenhaber B, Simon I: On filtering false positive transmembrane protein predictions. Protein Eng. 2002, 15: 745-752. 10.1093/protein/15.9.745.

    PubMed  CAS  Google Scholar 

  152. Ashrafi K, Farazi TA, Gordon JI: A role for Saccharomyces cerevisiae fatty acid activation protein 4 in regulating protein N-myristoylation during entry into stationary phase. J Biol Chem. 1998, 273: 25864-25874. 10.1074/jbc.273.40.25864.

    PubMed  CAS  Google Scholar 

  153. Robertson SE, Dockendorff TC, Leatherman JL, Faulkner DL, Jongens TA: germ cell-less is required only during the establishment of the germ cell lineage of Drosophila and has activities which are dependent and independent of its localization to the nuclear envelope. Dev Biol. 1999, 215: 288-297. 10.1006/dbio.1999.9453.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from Boehringer Ingelheim. This project was partly funded by the Fonds zur Förderung der wissenschaftlichen Forschung Österreichs (FWF grant P15037), by the Austrian National Bank (OeNB - Österreichische Nationalbank), by the Austrian Gen-AU bioinformatics integration network (BIN) sponsored by BM-BWK, by the bioinformatics contract study 2002-2004 for BM-WA, by the Asahi Glass Foundation, Japan (to N.H.), by grants-in-aid for Scientific Research on Priority Areas 'Genome Information Science' (14015231 and 15014230) (to N.H.) and Scientific Research (C) (to N.H.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by a grant-in-aid for the Fujita Health University High-tech Research Center from the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Maurer-Stroh.

Electronic supplementary material

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.

Authors’ original file for figure 1

Authors’ original file for figure 2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurer-Stroh, S., Gouda, M., Novatchkova, M. et al. MYRbase: analysis of genome-wide glycine myristoylation enlarges the functional spectrum of eukaryotic myristoylated proteins. Genome Biol 5, R21 (2004). https://doi.org/10.1186/gb-2004-5-3-r21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/gb-2004-5-3-r21

Keywords

Navigation