Skip to main content
Log in

Continuity and boundary conditions in thermodynamics: From Carnot’s efficiency to efficiencies at maximum power

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Classical equilibrium thermodynamics is a theory of principles, which was built from empirical knowledge and debates on the nature and the use of heat as a means to produce motive power. By the beginning of the 20th century, the principles of thermodynamics were summarized into the so-called four laws, which were, as it turns out, definitive negative answers to the doomed quests for perpetual motion machines. As a matter of fact, one result of Sadi Carnot’s work was precisely that the heat-to-work conversion process is fundamentally limited; as such, it is considered as a first version of the second law of thermodynamics. Although it was derived from Carnot’s unrealistic model, the upper bound on the thermodynamic conversion efficiency, known as the Carnot efficiency, became a paradigm as the next target after the failure of the perpetual motion ideal. In the 1950’s, Jacques Yvon published a conference paper containing the necessary ingredients for a new class of models, and even a formula, not so different from that of Carnot’s efficiency, which later would become the new efficiency reference. Yvon’s first analysis of a model of engine producing power, connected to heat source and sink through heat exchangers, went fairly unnoticed for twenty years, until Frank Curzon and Boye Ahlborn published their pedagogical paper about the effect of finite heat transfer on output power limitation and their derivation of the efficiency at maximum power, now mostly known as the Curzon-Ahlborn (CA) efficiency. The notion of finite rate explicitly introduced time in thermodynamics, and its significance cannot be overlooked as shown by the wealth of works devoted to what is now known as finite-time thermodynamics since the end of the 1970’s. The favorable comparison of the CA efficiency to actual values led many to consider it as a universal upper bound for real heat engines, but things are not so straightforward that a simple formula may account for a variety of situations. The object of the article is thus to cover some of the milestones of thermodynamics, and show through the illustrative case of thermoelectric generators, our model heat engine, that the shift from Carnot’s efficiency to efficiencies at maximum power explains itself naturally as one considers continuity and boundary conditions carefully; indeed, as an adaptation of Friedrich Nietzche’s quote, we may say that the thermodynamic demon is in the details.

This article is supplemented with comments by J.M.R. Parrondo and a final reply by the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Einstein, Autobiographical Notes, in Albert Einstein: Philosopher-Scientist, P.A. Schilpp, Ed. (Library of Living Philosophers, 1949)

  2. M.J. Klein, Science 157, 509 (1967)

    Article  ADS  Google Scholar 

  3. A.S. Eddington, The Nature of the Physical World (Cambridge University Press, 1928)

  4. L. Onsager, Phys. Rev. 37, 405 (1931)

    Article  ADS  Google Scholar 

  5. N. Pottier, Physique statistique hors dequilibre (EDP Sciences/CNRS Editions, Paris, 2007); Nonequilibrium Statistical Physics (Oxford University Press, Oxford, UK, 2010)

  6. S. Carnot, Réflexions sur la Puissance Motrice du Feu, et sur les Machines Propres à Développer cette Puissance (Bachelier, Paris, 1824)

  7. J. Yvon, La théorie statistique des fluides et l’équation d’état in Actualités Scientifiques et Industrielles 203 (Hermann, Paris, 1935)

  8. J. Yvon, Comptes-Rendus Hebdomadaires des Séances de l’Académie des Sciences 227, 763 (1948)

    Google Scholar 

  9. J. Yvon, J. Phys. Rad. 10, 373 (1949)

    Article  MATH  Google Scholar 

  10. J. Yvon, in Physics; Research Reactors, Proceedings of the International Conference on the Peaceful Uses of Atomic Energy, Vol. 2 (United Nations, New York, 1956)

  11. I.I. Novikov, J. Nucl. Energy 7, 125 (1958)

    Google Scholar 

  12. F.L. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975)

    Article  ADS  Google Scholar 

  13. B. Andresen, P. Salamon, R.S. Berry, J. Chem. Phys. 66, 1571 (1977)

    Article  ADS  Google Scholar 

  14. B. Andresen, R.S. Berry, A. Nitzan, P. Salamon, Phys. Rev. A 15, 2086 (1977)

    Article  ADS  Google Scholar 

  15. P. Salamon, B. Andresen, R.S. Berry, Phys. Rev. A 15, 2094 (1977)

    Article  ADS  Google Scholar 

  16. M. Rubin, Phys. Rev. A 19, 1272 (1979)

    Article  ADS  Google Scholar 

  17. L. Chen, C. Wu, F. Sun, Appl. Therm. Eng. 17, 103 (1997)

    Article  Google Scholar 

  18. Y. Apertet, H. Ouerdane, C. Goupil, Ph. Lecoeur, Phys. Rev. E 85, 031116 (2012)

    Article  ADS  Google Scholar 

  19. B. Thompson Count of Rumford, Phil. Trans. R. Soc. Lond. 80, 88 (1798)

    Google Scholar 

  20. G. Shaviv, The Life of the Stars: The Controversial Inception and Emergence of the Theory of Stellar Structure (Springer-Verlag Berlin and Heidelberg, 2009)

  21. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, Vol. I, Chap. 4 (Addison-Wesley, Reading, MA, 1963)

  22. R. Clausius, Annal. Phys. 79, 368 (1850)

    Article  ADS  Google Scholar 

  23. R. Clausius, Annal. Phys. 79, 500 (1850)

    Article  ADS  Google Scholar 

  24. R. Clausius, Phil. Mag. II, series 4, 1 (1851)

  25. R. Clausius, Phil. Mag. II, series 4, 102 (1851)

  26. S.J. Blundell, K.M. Blundell, Concepts in Thermal Physics, 2nd edition (Oxford University Press Inc., New York, 2010)

  27. A.E. Leanhardt, T.A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D.E. Pritchard, W. Ketterle, Science 301, 1513 (2003)

    Article  ADS  Google Scholar 

  28. W. Thomson, Phil. Mag. Series 3, 33, 313 (1848)

    Google Scholar 

  29. B. Andresen, Angew. Chem. Int. Ed. 50, 2690 (2011)

    Article  Google Scholar 

  30. G.J. Van Wylen, R.E. Sonntag, Fundamentals of Classical Thermodynamics (Wiley, New York, 1973)

  31. D.B. Spalding, E.H. Cole, Engineering Thermodynamics (Edward Arnold, London, 1966)

  32. B.D. Wood, Applications of Thermodynamics (Addison Wesley, London, 1969)

  33. M.J. Ondrechen, B. Andresen, M. Mozurchewich, R.S. Berry, Am. J. Phys. 49, 681 (1981)

    Article  ADS  Google Scholar 

  34. H.S. Leff, Am. J. Phys. 55, 602 (1986)

    Article  ADS  Google Scholar 

  35. K.H. Koffman, J.M. Burzler, S. Schubert, J. Non-Eq. Therm. 22, 311 (1997)

    Google Scholar 

  36. C. Van den Broeck, Phys. Rev. Lett. 95, 190602 (2005)

    Article  ADS  Google Scholar 

  37. T. Schmiedl, U. Seifert, Europhys. Lett. 81, 20003 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  38. D.P. Sekulic, J. Appl. Phys. 83, 4561 (1998)

    Article  ADS  Google Scholar 

  39. B. Andresen, J. Appl. Phys. 90, 6557 (2001)

    Article  ADS  Google Scholar 

  40. D.P. Sekulic, J. Appl. Phys. 90, 6560 (2001)

    Article  ADS  Google Scholar 

  41. B.H. Lavenda, Am. J. Phys. 75, 169 (2007)

    Article  ADS  Google Scholar 

  42. Take two strictly positive numbers, say a and b; there exists a strictly positive number G that satisfies: , which is the common ratio of a geometric sequence: a, G, and b; the number , being the geometric average of a and b. Note that the geometric average is smaller than the arithmetic average. See Ref. [43] for further detail on means and their properties

  43. B.L. Burrows, R.F. Talbot, Int. J. Math. Educ. Sci. Technol. 17, 275 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  44. W. Thomson, Phil. Mag. 5, 102 (1853)

    Google Scholar 

  45. E.D. Cashwell, C.J. Everett, Am. Math. Monthly 74, 271 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  46. C. Wu, R.L. Kiang, Energy 17, 1173 (1992)

    Article  Google Scholar 

  47. Y. Apertet, H. Ouerdane, C. Goupil, Ph. Lecoeur, Phys. Rev. E 88, 022137 (2013)

    Article  ADS  Google Scholar 

  48. S.R. de Groot, Thermodynamics of Irreversible Processes (Interscience, New York, 1958)

  49. J.M. Gordon, Am. J. Phys. 59, 551 (1991)

    Article  ADS  Google Scholar 

  50. Y. Apertet, H. Ouerdane, O. Glavatskaya, C. Goupil, Ph. Lecoeur, EPL 97, 28001 (2012)

    Article  ADS  Google Scholar 

  51. Y. Apertet, H. Ouerdane, C. Goupil, Ph. Lecoeur, J. Appl. Phys. 116, 144901 (2014)

    Article  ADS  Google Scholar 

  52. Y. Apertet, H. Ouerdane, C. Goupil, Ph. Lecoeur, J. Phys.: Conf. Series 95, 012103 (2012)

    ADS  Google Scholar 

  53. Y. Apertet, H. Ouerdane, O. Glavatskaya, C. Goupil, Ph. Lecoeur, EPL 101, 68008 (2013)

    Article  ADS  Google Scholar 

  54. Z.-C. Tu, J. Phys. A: Math. Theor. 41, 312003 (2008)

    Article  ADS  Google Scholar 

  55. M. Esposito, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 102, 130602 (2009)

    Article  ADS  Google Scholar 

  56. Z. Yan, J. Chen, Am. J. Phys. 61, 380 (1997)

    Article  ADS  Google Scholar 

  57. J.M. Gordon, Am. J. Phys. 57, 1136 (1989)

    Article  ADS  Google Scholar 

  58. E. Noether, Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl. 2, 235 (1918)

    Google Scholar 

  59. M.A. Tavel, Transp. Theory Stat. Phys. 1, 183 (1971)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  60. GillesCohen-Tannoudji, Les Constantes Universelles (Hachette Littératures, Paris, 1998)

  61. Y. Apertet, H. Ouerdane, C. Goupil, Ph. Lecoeur, Phys. Rev. E 90, 012113 (2014)

    Article  ADS  Google Scholar 

  62. Heat engines produce useful work, but they also reject heat in virtue of the second law of thermodynamics. As the rejected heat is a by-product with lower or no utility at all, it is called “waste heat”

  63. C.B. Vining, Nat. Mater. 8, 83 (2009)

    Article  ADS  Google Scholar 

  64. Thermoelectric Nanomaterials, Springer Series in Materials Science, Vol. 182, edited by K. Koumoto and T. Mori (Springer, Berlin, 2013)

  65. H. Ouerdane, A.A. Varlamov, A.V. Kavokin, C. Goupil, C.B. Vining, Phys. Rev. B 91, 100501(R) (2015)

    Article  ADS  Google Scholar 

  66. P. Chambadal, Thermodynamique de la Turbine à Gaz (Hermann & Cie Editeurs, Paris, 1949)

  67. A. Vaudrey, F. Lanzetta, M. Feidt, J. Non-Eq. Stat. Phys. 39, 199 (2014)

    Google Scholar 

  68. H.B. Reitlinger, Sur l’Utilisation de la Chaleur dans les Machines à Feu (Vaillant-Carmanne, Liège, 1929)

  69. J.C. Ward, Memoirs of a Theoretical Physicist (Optics Journal, Rochester, New York, 2004)

  70. C. Jungnickel, R. McCormmach, Intellectual Mastery of Nature. Theoretical Physics from Ohm to Einstein, Vol. 1: The Torch of Mathematics, 1800 to 1870; Vol. 2: The Now Mighty Theoretical Physics, 1870 to 1925 (University of Chicago Press, 1990)

References

  1. I.A. Martinez, E. Roldan, L. Dinis, D. Petrov, J.M.R. Parrondo, R. Rica, [arXiv:1412.1282] [cond-mat] (2014)

  2. I.M. Sokolov, A. Blumen, J. Phys. A-Math. Gen. 30, 3021 (1999)

    Article  ADS  Google Scholar 

  3. J.M. Parrondo, P. Español, American J. Phys. 64, 1125 (1996)

    Article  ADS  Google Scholar 

References

  1. H. Ouerdane, Y. Apertet, C. Goupil, Ph. Lecoeur, Eur. Phys. J. Special Topics 224(5), 839 (2015)

    Article  Google Scholar 

  2. J.M.R. Parrondo, L. Granger, Eur. Phys. J. Special Topics 224(5), 865 (2015)

    Article  Google Scholar 

  3. Y. Apertet, H. Ouerdane, C. Goupil, Ph. Lecoeur, Phys. Rev. E 90, 012113 (2014)

    Article  ADS  Google Scholar 

  4. L. Onsager, Phys. Rev. 37, 405 (1931)

    Article  ADS  Google Scholar 

  5. H.B. Callen, Phys. Rev. 73, 1349 (1948)

    Article  MATH  ADS  Google Scholar 

  6. Y. Apertet, H. Ouerdane, C. Goupil, Ph. Lecoeur (unpublished)

  7. U. Seifert, Rep. Prog. Phys. 75, 126001 (2012)

    Article  ADS  Google Scholar 

  8. I.A. Martinez, E. Roldan, L. Dinis, D. Petrov, J.M.R. Parrondo, R. Rica, Brownian Carnot Engine [arXiv:1412.1282]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ouerdane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouerdane, H., Apertet, Y., Goupil, C. et al. Continuity and boundary conditions in thermodynamics: From Carnot’s efficiency to efficiencies at maximum power. Eur. Phys. J. Spec. Top. 224, 839–864 (2015). https://doi.org/10.1140/epjst/e2015-02431-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02431-x

Keywords

Navigation