Skip to main content

Advertisement

Log in

Growth dynamics of breath figures on phase change materials: a numerical study

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We present a numerical investigation of the effect of droplet motion on the growth dynamics of breath figures during condensation on phase change material. Breath figures are a micro-scale pattern of droplets that form when droplets condense on a cold surface. The numerical model considers the growth of droplets due to condensation, droplet coalescence, random droplet movement, and surface wettability. We study the dynamics of breath figures in terms of the time of evolution of the mean radius of droplets \(\langle R \rangle\), surface coverage \(\varepsilon ^2\), and the droplet size distribution \(n_{\mathrm{s}}\). We demonstrate that the droplets’ movement significantly changes the distribution of droplets condensing on a phase change material by increasing coalescence. We observed four growth regimes on phase change materials due to the movement of droplets. First, in the initial regime, \(\langle R \rangle \sim t^{\alpha _1}\), intermediate regime \(\langle R \rangle \sim t^{\alpha _2}\), coalescence-dominated regime \(\langle R \rangle \sim t^{\alpha _3}\), and late regime \(\langle R \rangle \sim t^{\alpha _4}\). The growth exponents are \(\alpha _1 \approx 1/2\), \(\alpha _2 \approx 1\), and \(\alpha _4 = 1/3\). While the growth exponent \(\alpha _3\) depends on the contact angle of the surface \(\theta\). Furthermore, we show the scaling of the droplet size distributions at different times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. J.M. Beér, High efficiency electric power generation: the environmental role. Prog. Energy Combust. Sci. 33(2), 107–134 (2007)

    Article  MathSciNet  Google Scholar 

  2. N.D. Pawar, S.R. Kale, S.S. Bahga, H. Farhat, S. Kondaraju, Study of microdroplet growth on homogeneous and patterned surfaces using lattice Boltzmann modeling. J. Heat Transfer 141(6), 1–10 (2019)

    Article  Google Scholar 

  3. N.D. Pawar, S.S. Bahga, S.R. Kale, S. Kondaraju, Numerical investigation of multiple droplet growth dynamics on a solid surface using three-dimensional lattice Boltzmann simulations. AIP Adv. 11(4), 045116 (2021)

    Article  ADS  Google Scholar 

  4. R. Leach, F. Stevens, S. Langford, J. Dickinson, Dropwise condensation: experiments and simulations of nucleation and growth of water drops in a cooling system. Langmuir 22(21), 8864–8872 (2006)

    Article  Google Scholar 

  5. M. Singh, N.D. Pawar, S. Kondaraju, S.S. Bahga, Modeling and simulation of dropwise condensation: a review. J. Indian Inst. Sci. 99(1), 157–171 (2019)

    Article  Google Scholar 

  6. A.D. Khawaji, I.K. Kutubkhanah, J.-M. Wie, Advances in seawater desalination technologies. Desalination 221(1–3), 47–69 (2008)

    Article  Google Scholar 

  7. T. Humplik, J. Lee, S. O’hern, B. Fellman, M. Baig, S. Hassan, M. Atieh, F. Rahman, T. Laoui, R. Karnik et al., Nanostructured materials for water desalination. Nanotechnology 22(29), 292001 (2011)

    Article  Google Scholar 

  8. D. Beysens, C. Knobler, Growth of breath figures. Phys. Rev. Lett. 57(12), 1433 (1986)

    Article  ADS  Google Scholar 

  9. A. Steyer, P. Guenoun, D. Beysens, Spontaneous jumps of a droplet. Phys. Rev. Lett. 68(1), 64 (1992)

    Article  ADS  Google Scholar 

  10. R.D. Narhe, M. Khandkar, P. Shelke, A. Limaye, D.A. Beysens, Condensation-induced jumping water drops. Phys. Rev. E 80(3), 031604 (2009)

    Article  ADS  Google Scholar 

  11. D. Baratian, R. Dey, H. Hoek, D. Van Den Ende, F. Mugele, Breath figures under electrowetting: electrically controlled evolution of drop condensation patterns. Phys. Rev. Lett. 120(21), 214502 (2018)

    Article  ADS  Google Scholar 

  12. R. Chatterjee, D. Beysens, S. Anand, Delaying ice and frost formation using phase-switching liquids. Adv. Mater. 31(17), 1807812 (2019)

    Article  Google Scholar 

  13. R. Narhe, N.D. Pawar, M. Khandkar, A. Banpurkar, A. Limaye, Numerical simulations of growth dynamics of breath figures on phase change materials: the effect of accelerated coalescence due to droplet motion. EPL (Europhys. Lett.) 135(3), 36002 (2021)

    Article  ADS  Google Scholar 

  14. S. Ulrich, S. Stoll, E. Pefferkorn, Computer simulations of homogeneous deposition of liquid droplets. Langmuir 20(5), 1763–1771 (2004)

    Article  Google Scholar 

  15. R. Narhe, D. Beysens, Nucleation and growth on a superhydrophobic grooved surface. Phys. Rev. Lett. 93(7), 076103 (2004)

    Article  ADS  Google Scholar 

  16. R. Narhe, D. Beysens, Growth dynamics of water drops on a square-pattern rough hydrophobic surface. Langmuir 23(12), 6486–6489 (2007)

    Article  Google Scholar 

  17. D. Fritter, C.M. Knobler, D. Roux, D. Beysens, Computer simulations of the growth of breath figures. J. Stat. Phys. 52(5), 1447–1459 (1988)

    Article  ADS  Google Scholar 

  18. D. Beysens, Dew nucleation and growth. C. R. Phys. 7(9–10), 1082–1100 (2006)

    Article  ADS  Google Scholar 

  19. F. Family, P. Meakin, Kinetics of droplet growth processes: simulations, theory, and experiments. Phys. Rev. A 40, 3836–3854 (1989)

    Article  ADS  Google Scholar 

  20. P. Meakin, F. Family, Scaling in the kinetics of droplet growth and coalescence: heterogeneous nucleation. J. Phys. A Math. Gen. 22, L225–L230 (1989)

    Article  ADS  Google Scholar 

  21. P. Meakin, Dropwise condensation: the deposition growth and coalescence of fluid droplets. Phys. Scr. T44, 31–41 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilesh D. Pawar.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, N.D., Narhe, R.D. Growth dynamics of breath figures on phase change materials: a numerical study. Eur. Phys. J. Spec. Top. 232, 957–963 (2023). https://doi.org/10.1140/epjs/s11734-023-00765-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00765-0

Navigation